Zacytuj

[1] Antonelli M., Benzoni S., Bergna G., Bernardi M., Bertanza G., Cantoni B., Delli Compagni R., Gugliandolo M.C., Malpei F., Mezzanotte V., Pannuzzo B., Porro E. Contamination and removal of emerging micropollutants in wastewater and in water intended for human consumption. (Contaminazione e rimozione di microinquinanti emergenti in acque reflue e in acque destinate al consumo umano). In: GdL-MIE. Inquinanti Emergenti, Tartari G., Bergna G., Lietti M., Rizzo A., Lazzari F. e Brioschi C. (eds). Lombardy Energy Cleantech Cluster, Milano: 2020. (In Italian). Search in Google Scholar

[2] Gusmaroli L., Mendoza E., Petrovic M., Buttiglieri G. How do WWTPs operational parameters affect the removal rates of EU Watch list compounds? Science of the Total Environment 2020:714:136773. https://doi.org//10.1016/j.scitotenv.2020.13677310.1016/j.scitotenv.2020.13677332018966 Search in Google Scholar

[3] Rizzo L., Malato S., Antakyali D., Beretsou V. G., Đolić M. B., Gernjak W., Heath E., Ivancev-Tumbas I., Karaolia P., Ribeiro A. R. L., Mascolo G., McArdell C. S., Schaar H., Silva A. M. T., Fatta-Kassinos D. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of The Total Environment 2019:655:986–1008. https://doi.org//10.1016/j.scitotenv.2018.11.26510.1016/j.scitotenv.2018.11.26530577146 Search in Google Scholar

[4] Mu R., Jia Y., Ma G., Liu L., Hao K., Qi F., Shao Y. Advances in the use of microalgal–bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques. Water Environment Research 2021:93(8):1217–1230. https://doi.org//10.1002/wer.149610.1002/wer.149633305497 Search in Google Scholar

[5] Reddy K., Renuka N., Kumari S., Bux F. Algae-mediated processes for the treatment of antiretroviral drugs in wastewater: Prospects and challenges. Chemosphere 2021:280:130674. https://doi.org/10.1016/j.chemosphere.2021.13067410.1016/j.chemosphere.2021.13067434162077 Search in Google Scholar

[6] Abargues M. R., Giménez J. B., Ferrer J., Bouzas A., Seco A. Endocrine disruptor compounds removal in wastewater using microalgae: Degradation kinetics assessment. Chemical Engineering Journal 2018:334:313–321. https://doi.org//10.1016/j.cej.2017.09.18710.1016/j.cej.2017.09.187 Search in Google Scholar

[7] De Wilt A., Butkovskyi A., Tuantet K., Leal L. H., Fernandes T. V., Langenhoff A., Zeeman G. Micropollutant removal in an algal treatment system fed with source separated wastewater streams. Journal of Hazardous Materials 2016:304:84–92. https://doi.org/10.1016/j.jhazmat.2015.10.03310.1016/j.jhazmat.2015.10.03326546707 Search in Google Scholar

[8] Hom-Diaz A., Llorca M., Rodriguez-Mozaz S., Vicent T., Barcelo D., Blanquez P. Microalgae cultivation on wastewater digestate: beta-estradiol and 17alpha-ethynylestradiol degradation and transformation products identification. Journal of Environmental Management 2015:155:106–113. https://doi.org/10.1016/j.jenvman.2015.03.00310.1016/j.jenvman.2015.03.00325785785 Search in Google Scholar

[9] Sami N., Fatma T. Studies on estrone biodegradation potential of cyanobacterial species. Biocatalysis and Agricultural Biotechnology 2019:17:576–582. https://doi.org/10.1016/j.bcab.2019.01.02210.1016/j.bcab.2019.01.022 Search in Google Scholar

[10] Matamoros V., Gutiérrez R., Ferrer I., García J., Bayona J. M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study. Journal of Hazardous Materials 2015:288:34–42. https://doi.org//10.1016/j.jhazmat.2015.02.00210.1016/j.jhazmat.2015.02.00225682515 Search in Google Scholar

[11] Mantovani M., Marazzi F., Fornaroli R., Bellucci M., Ficara E., Mezzanotte V. Outdoor pilot-scale raceway as a microalgae-bacteria sidestream treatment in a WWTP. Science of the Total Environment 2020:710. https://doi.org//10.1016/j.scitotenv.2019.13558310.1016/j.scitotenv.2019.13558331785903 Search in Google Scholar

[12] Marazzi F., Bellucci M., Rossi S., Fornaroli R., Ficara E., Mezzanotte V. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research 2019:39:101430. https://doi.org//10.1016/j.algal.2019.10143010.1016/j.algal.2019.101430 Search in Google Scholar

[13] Pizzera A., Scaglione D., Bellucci M., Marazzi F., Mezzanotte V., Parati K., Ficara E. Digestate treatment with algae-bacteria consortia: a field pilot-scale experimentation in a sub-optimal climate area. Bioresource Technology 2019:274:232–243. https://doi.org//10.1016/j.biortech.2018.11.06710.1016/j.biortech.2018.11.06730513411 Search in Google Scholar

[14] Golovko O., Örn S., Sörengård M., Frieberg K., Nassazzi W., Yin Lai F., Ahrens L. Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Science of The Total Environment 2021:754:142122. https://doi.org/10.1016/j.scitotenv.2020.14212210.1016/j.scitotenv.2020.14212232920399 Search in Google Scholar

[15] Ofrydopoulou A., Nannou C., Evgenidou E., Christodoulou A., Lambropoulou D. Assessment of a wide array of organic micropollutants of emerging concern in wastewater treatment plants in Greece: Occurrence, removals, mass loading and potential risks. Science of The Total Environment 2022:802:149860. https://doi.org/10.1016/j.scitotenv.2021.14986010.1016/j.scitotenv.2021.14986034525693 Search in Google Scholar

[16] Krzeminski P., Tomei M. C., Karaolia P., Langenhoff A., Almeida C. M. R., Felis E., Gritten F., Andersen H. R., Fernandes T., Manaia C. M., Rizzo L., Fatta-Kassinos D. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of The Total Environment 2019:648:1052–1081. https://doi.org//10.1016/j.scitotenv.2018.08.13010.1016/j.scitotenv.2018.08.13030340253 Search in Google Scholar

[17] Guillossou R., Le Roux J., Mailler R., Vulliet E., Morlay C., Nauleau F., Gasperi J., Rocher V. Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere 2019:218:1050–1060. https://doi.org//10.1016/j.chemosphere.2018.11.18210.1016/j.chemosphere.2018.11.18230609484 Search in Google Scholar

[18] Boix C., Ibáñez M., Sancho J. V., Parsons J. R., deVoogt P., Hernández F. Biotransformation of pharmaceuticals in surface water and during waste water treatment: Identification and occurrence of transformation products Journal of Hazardous Materials 2016:302:175–187. https://doi.org//10.1016/j.jhazmat.2015.09.05310.1016/j.jhazmat.2015.09.05326476304 Search in Google Scholar

[19] Blair B., Nikolaus A., Hedman C., Klaper R., Grundl T. 2015. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 2015:134:395–401. https://doi.org//10.1016/j.chemosphere.2015.04.07810.1016/j.chemosphere.2015.04.07825985097 Search in Google Scholar

[20] Ismail M.M., Essam T. M., Ragab Y. M., El-Sayed A.E–K.B., Mourad F. E. Remediation of a mixture of analgesics in a stirred-tank photobioreactor using microalgal-bacterial consortium coupled with attempt to valorise the harvested biomass. Bioresource Technology 2017:232:364–371. https://doi.org/10.1016/j.biortech.2017.02.06210.1016/j.biortech.2017.02.06228254731 Search in Google Scholar

[21] Hom-Diaz A., Jaen-Gil A., Bello-Laserna I., Rodríguez-Mozaz S., Vicent T., Barceló D., Blánquez P. Performance of a microalgal photobioreactor treating toilet wastewater: pharmaceutically active compound removal and biomass harvesting. Science of The Total Environment 2017:592:1–11. https://doi.org/10.1016/j.scitotenv.2017.02.22410.1016/j.scitotenv.2017.02.22428292669 Search in Google Scholar

[22] Escudero A., Hunter C., Roberts J., Helwig K., Pahl O. Pharmaceuticals removal and nutrient recovery from wastewaters by Chlamydomonas acidophila. Biochemical Engineering Journal 2020:156:107517. https://doi.org/10.1016/j.bej.2020.10751710.1016/j.bej.2020.107517 Search in Google Scholar

[23] Gentili F. G., Fick J. Algal cultivation in urban wastewater: an efficient way to reduce pharmaceutical pollutants. Journal of Applied Phycology 2017:29:255–262. https://doi.org/10.1007/s10811-016-0950-010.1007/s10811-016-0950-0534614428344390 Search in Google Scholar

[24] Dimitrov S. D., Dermen I. A., Dimitrova N. H., Vasilev K. G., Schultz T. W., Mekenyan, O. G. Mechanistic relationship between biodegradation and bioaccumulation. Practical outcomes. Regulatory Toxicology and Pharmacology 2019:107:104411. https://doi.org/10.1016/j.yrtph.2019.10441110.1016/j.yrtph.2019.10441131226393 Search in Google Scholar

[25] Chandrasekhar K., Raj T., Ramanaiah S. V., Gopalakrishnan K., Rajesh Banu J., Varjani S., Sharma P., Pandey A., Kumar S., Kim S.-H. Algae biorefinery: a promising approach to promote microalgae industry and waste utilization. Journal of Biotechnology 2022:345:1–16. https://doi.org/10.1016/j.jbiotec.2021.12.00810.1016/j.jbiotec.2021.12.00834954289 Search in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other