Otwarty dostęp

The effect of the District Heating Return Temperature Reduction on Flue Gas Condenser Efficiency

, ,  oraz   
14 gru 2020

Zacytuj
Pobierz okładkę

[1] European Parliament Council of the European Union. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC Text with EEA relevance. Official journal of the European Union 2012:L 315/1.Search in Google Scholar

[2] European Parliament Council of the European Union. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012. Official journal of the European Union. https://doi:10.3000/19770677.L_2012.315.engSearch in Google Scholar

[3] Volkova A., Mašatin V., Siirde A. Methodology for evaluating the transition process dynamics towards 4th generation district heating networks. Energy 2018:150:253–261. https://doi.org/10.1016/j.energy.2018.02.12310.1016/j.energy.2018.02.123Search in Google Scholar

[4] Köfinger M., Basciotti D., Schmidt R. R. Reduction of return temperatures in urban district heating systems by the implementation of energy-cascades. Energy Procedia 2017:116:438-451. https://doi.org/10.1016/j.egypro.2017.05.09110.1016/j.egypro.2017.05.091Search in Google Scholar

[5] Feofilovs M., Pakere I., Romagnoli F. Life Cycle Assessment of Different Low-Temperature District Heating Development Scenarios: A Case Study of Municipality in Latvia. Environmental and Climate Technologies 2019:23(2):272–290. https://doi.org/10.2478/rtuect-2019-006810.2478/rtuect-2019-0068Search in Google Scholar

[6] Pakere I., Blumberga D. Solar Energy in Low Temperature District Heating. Environmental and Climate Technologies 2019:23(3):147–158. https://doi.org/10.2478/rtuect-2019-008510.2478/rtuect-2019-0085Search in Google Scholar

[7] Polikarpova I., Lauka D., Blumberga D., Vigants E. Multi - Criteria Analysis to Select Renewable Energy Solution for District Heating System. Environmental and Climate Technologies 2019:23(3):101–109. https://doi.org/10.2478/rtuect-2019-008210.2478/rtuect-2019-0082Search in Google Scholar

[8] Pieper H., Volkova A., Mašatin V. Large-scale heat pump integration model: A case study of Tallinn district heating. 4th Int. Conf. Smart Energy Syst. 4th Gener. Dist. Heating, Aalborg, Denmark, 2018.Search in Google Scholar

[9] Nardecchia F., et al. An alternative tool for the energy evaluation and the management of thermal networks: The exergy analysis. EEEIC 2016:1–6. https://doi.org/10.1109/EEEIC.2016.755564510.1109/EEEIC.2016.7555645Search in Google Scholar

[10] Karkaba H., Habchi C., Al Takash A. Numerical Analysis of Different Indoor Heating Methods. Proceeding of the 4th International Conference Advanced Computer Tools Engineering Applications (ACTEA) 2019:1–7. https://doi.org/10.1109/ACTEA.2019.885107510.1109/ACTEA.2019.8851075Search in Google Scholar

[11] Guelpa E., Marincioni L. Demand side management in district heating systems by innovative control. Energy 2019:188:116037. https://doi.org/10.1016/j.energy.2019.11603710.1016/j.energy.2019.116037Search in Google Scholar

[12] Latõšov E., et al. The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies 2019:23(1):1–13. https://doi.org/10.2478/rtuect-2019-000110.2478/rtuect-2019-0001Search in Google Scholar

[13] Brand M., Svendsen S. Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment. Energy 2013:62:311–319. https://doi.org/10.1016/j.energy.2013.09.02710.1016/j.energy.2013.09.027Search in Google Scholar

[14] Volkova A., et al. Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network. Energy 2020:198:117304. https://doi.org/10.1016/j.energy.2020.11730410.1016/j.energy.2020.117304Search in Google Scholar

[15] Ziemele J., et al. Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies. Energy 2017:137:834–845. https://doi.org/10.1016/j.energy.2017.04.13010.1016/j.energy.2017.04.130Search in Google Scholar

[16] Galindo Fernández M., et al. Efficient district heating and cooling systems in the EU Case studies analysis, replicable key success factors and potential policy implications. Luxembourg: Publications Office of the European Union, 2016. https://doi.org/10.2760/371045Search in Google Scholar

[17] AS Narva Soojusvõrk. Technical report. 2019.Search in Google Scholar

[18] Blumberga D., et al. Empirical Model of Cost Reduction in Local DH Systems Low Temperature Approach. Environmental and Climate Technologies 2019:23(3):190–201. https://doi.org/10.2478/rtuect-2019-008910.2478/rtuect-2019-0089Search in Google Scholar

[19] Vigants G., et al. Cost Analysis of a Wood Chip Boiler House with a Gas Condenser. Energy Procedia 2015:75:1214–1220. https://doi.org/10.1016/j.egypro.2015.07.15910.1016/j.egypro.2015.07.159Search in Google Scholar

[20] Priedniece V., et al. Experimental and analytical study of the flue gas condenser - fog unit. Energy Procedia 2019:158:822–827. https://doi.org/10.1016/j.egypro.2019.01.21510.1016/j.egypro.2019.01.215Search in Google Scholar

[21] Soleimanikutanaei S., Lin C.X., Wang D. Numerical modeling and analysis of Transport Membrane Condensers for waste heat and water recovery from flue gas. International Journal of Thermal Sciences 2019:136:96–106. https://doi.org/10.1016/j.ijthermalsci.2018.10.01410.1016/j.ijthermalsci.2018.10.014Search in Google Scholar

[22] Vannoni A., Sorce A., Bosser S., Buddenberg T. Heat recovery from Combined Cycle Power Plants for Heat Pumps. E3S Web Conference 2019:113:1–9. https://doi.org/10.1051/e3sconf/20191130101110.1051/e3sconf/201911301011Search in Google Scholar

[23] Striūgas N., et al. Estimating the fuel moisture content to control the reciprocating grate furnace firing wet woody biomass. Energy Conversion Management 2017:149:937–949. https://doi.org/10.1016/j.enconman.2017.04.01410.1016/j.enconman.2017.04.014Search in Google Scholar

[24] Paraschiv L. S., Serban A., Paraschiv S. Calculation of combustion air required for burning solid fuels (coal / biomass / solid waste) and analysis of flue gas composition. Energy Reports 2019:6:36–45. https://doi.org/10.1016/j.egyr.2019.10.01610.1016/j.egyr.2019.10.016Search in Google Scholar

[25] European Standards, DIN EN 12952-15:2003. Water-tube boilers and auxiliary installations - Part 15: Acceptance tests. 2003.Search in Google Scholar

[26] Li P.W., Chyang C.S. A comprehensive study on NOx emission and fuel nitrogen conversion of solid biomass in bubbling fluidized beds under staged combustion. Journal of the Energy Institute 2019:93:324–334. https://doi.org/10.1016/j.joei.2019.02.00710.1016/j.joei.2019.02.007Search in Google Scholar

[27] Kuznetsov G. V., et al. Mechanism of Sulfur and Nitrogen Oxides Suppression in Combustion Products of Mixed Fuels Based on Coal and Wood. Combustion Science and Technology 2019:191(11):2071–2081. https://doi.org/10.1080/00102202.2018.154328510.1080/00102202.2018.1543285Search in Google Scholar

[28] Blumberga D., Vigants E., Veidenbergs I. Analysis of flue gas condenser operation. Latvian Journal of Physics and Technical Science 2011:48(4):58–65. https://doi.org/10.2478/v10047-011-0028-310.2478/v10047-011-0028-3Search in Google Scholar

[29] Colburn A. P., Hougen O. A. Design of Cooler Condensers for Mixtures of Vapors with Noncondensing Gases. Industrial Engineering and Chemistry 1934:26:1178–1182. https://doi.org/10.1021/ie50299a01110.1021/ie50299a011Search in Google Scholar

[30] Jia L., et al. Effects of water vapor condensation on the convection heat transfer of wet flue gas in a vertical tube. Int. J. Heat & Mass Transfer 2001:44(22):4257–4265. https://doi.org/10.1016/S0017-9310(01)00082-510.1016/S0017-9310(01)00082-5Search in Google Scholar

[31] Jeong K., et al. J., Analytical modeling of water condensation in condensing heat exchanger. International Journal of Heat and Mass Transfer 2010:53(11–12):2361–2368. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.00410.1016/j.ijheatmasstransfer.2010.02.004Search in Google Scholar

[32] Käär H., et al. Soojus- ja massilevi. I osa. Põhikursus. (Heat and mass transfer. Part I. Basic course.) Tallinn: Tallinn University of Technology, 1998. (in Estonian)Search in Google Scholar

[33] Poobus A., Tiikma T. Soojus- ja massilevi II. (Heat and mass transfer. Part II.) Tallinn: Tallinn University of Technology, 2000.Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne