Otwarty dostęp

Sustainability Analysis of Manufacturing Industry

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”

Zacytuj

[1] Fox S., Alptekin B. A taxonomy of manufacturing distributions and their comparative relations to sustainability. Journal of Cleaner Production 2018:172:1823–1834. doi:10.1016/j.jclepro.2017.12.00410.1016/j.jclepro.2017.12.004Open DOISearch in Google Scholar

[2] Azapagic A., Stamford L., Youds L., Barteczko-Hibbert C. Towards sustainable production and consumption: A novel DEcision-Support Framework IntegRating Economic, Environmental and Social Sustainability (DESIRES). Computers & Chemical Engineering 2016:91:93–103. doi:10.1016/j.compchemeng.2016.03.01710.1016/j.compchemeng.2016.03.017Open DOISearch in Google Scholar

[3] Andersson E., Arfwidsson O., Thollander P. Benchmarking energy performance of industrial small and medium-sized enterprises using an energy efficiency index: Results based on an energy audit policy program. Journal of Cleaner Production 2018:182:883–895. doi:10.1016/j.jclepro.2018.02.02710.1016/j.jclepro.2018.02.027Open DOISearch in Google Scholar

[4] Kluczek A. An energy-led sustainability assessment of production systems – an approach for improving energy efficiency performance. International Journal of Production Economics 2019:216:190–203. doi:10.1016/j.ijpe.2019.04.01610.1016/j.ijpe.2019.04.016Open DOISearch in Google Scholar

[5] Aguado S., Alvarez R., Domingo R. Model of efficient and sustainable improvements in a lean production system through processes of environmental innovation. Journal of Cleaner Production 2013:47:141–148. doi:10.1016/j.jclepro.2012.11.04810.1016/j.jclepro.2012.11.048Open DOISearch in Google Scholar

[6] Stoycheva S., et al. Multi-criteria decision analysis framework for sustainable manufacturing in automotive industry. Journal of Cleaner Production 2018:187:257–272. doi:10.1016/j.jclepro.2018.03.13310.1016/j.jclepro.2018.03.133Open DOISearch in Google Scholar

[7] Kittipongvises S. Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand. Environmental and Climate Technologies 2017:20(1):67–83. doi.:10.1515/rtuect-2017-001110.1515/rtuect-2017-0011Open DOISearch in Google Scholar

[8] Gbededo M. A., Liyanage K., Garza-Reyes J. A. Towards a Life Cycle Sustainability Analysis: A systematic review of approaches to sustainable manufacturing. Journal of Cleaner Production 2018:184:1002–1015. doi:10.1016/j.jclepro.2018.02.31010.1016/j.jclepro.2018.02.310Search in Google Scholar

[9] Vigants H., Blumberga D., Veidenbergs I. Demand Side Management in Pellet Production: Internal and External Factors. Environmental and Climate Technologies 2014:14(1):30–35. doi:10.1515/rtuect-2014-001110.1515/rtuect-2014-0011Open DOISearch in Google Scholar

[10] Cai W., et al. An energy management approach for the mechanical manufacturing industry through developing a multi-objective energy benchmark. Energy Conversion and Management 2017:132:361–371. doi:10.1016/j.enconman.2016.11.02410.1016/j.enconman.2016.11.024Search in Google Scholar

[11] Kubule A., et al. Highlights on energy efficiency improvements: a case of a small brewery. Journal of Cleaner Production 2016:138(Part2):275–286. doi:10.1016/j.jclepro.2016.02.13110.1016/j.jclepro.2016.02.131Open DOISearch in Google Scholar

[12] Andersson E., et al. Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program. Renewavle and Sustainable Energy Reviews 2018:93:165–177. doi:10.1016/j.rser.2018.05.03710.1016/j.rser.2018.05.037Open DOISearch in Google Scholar

[13] Gerres T., et al. A review of cross-sector decarbonisation potentials in the European energy intensive industry. Journal of Cleaner Production 2019:210:585–601. doi:10.1016/j.jclepro.2018.11.03610.1016/j.jclepro.2018.11.036Open DOISearch in Google Scholar

[14] Trianni A., et al. Measuring industrial sustainability performance: Empirical evidence from Italian and German manufacturing small and medium enterprises. Journal of Cleaner Production 2019:229:1355–1376. doi:10.1016/j.jclepro.2019.05.07610.1016/j.jclepro.2019.05.076Open DOISearch in Google Scholar

[15] Weigel M., et al. Multicriteria analysis of primary steelmaking technologies. Journal of Cleaner Production 2016:112:1064–1076. doi:10.1016/j.jclepro.2015.07.13210.1016/j.jclepro.2015.07.132Open DOISearch in Google Scholar

[16] Vanaga R., et al. Choosing the best nature’s strategy with the highest thermodynamic potential for application in building thermal envelope using MCA analysis. Energy Procedia 2018:152:450–455. doi:10.1016/j.egypro.2018.09.25210.1016/j.egypro.2018.09.252Open DOISearch in Google Scholar

[17] Prodanuks T., Blumberga D. Methodology of municipal energy plans. Priorities for sustainability. Energy Procedia 2018:147:594–599. doi:10.1016/j.egypro.2018.07.07610.1016/j.egypro.2018.07.076Open DOISearch in Google Scholar

[18] Stamford L., Azapagic A. Life cycle sustainability assessment of UK electricity scenarios to 2070. Energy for Sustainable Development 2014:23:194–211. doi:10.1016/j.esd.2014.09.00810.1016/j.esd.2014.09.008Open DOISearch in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other