Zacytuj

[1] Das S., Warren J., West D., Schexnayder S. M. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis. United States, 2016. doi:10.2172/133304910.2172/1333049Open DOISearch in Google Scholar

[2] Fleischer J., Teti R., Lanza G., Mativenga P., Möhring H.-C., Caggiano A. Composite materials parts manufacturing. CIRP Annals 2018:67:603–626. doi:10.1016/j.cirp.2018.05.00510.1016/j.cirp.2018.05.005Open DOISearch in Google Scholar

[3] Campbell F. C. Structural Composite Materials. ASM International, 2010.10.31399/asm.tb.scm.9781627083140Search in Google Scholar

[4] Rybicka J., Tiwari A., Alvarez Del Campo P., Howarth J. Capturing composites manufacturing waste flows through process mapping. Journal of Cleaner Production 2015:91:251–261. doi:10.1016/j.jclepro.2014.12.03310.1016/j.jclepro.2014.12.033Open DOISearch in Google Scholar

[5] Marshall A. Composite Basics. Aircraft Technical Book Co, 2007.Search in Google Scholar

[6] Lefeuvre A., Garnier S., Jacquemin L., Pillain B., Sonnemann G. Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050. Resources, Conservation and Recycling 2017:125:264–272. doi:10.1016/j.resconrec.2017.06.02310.1016/j.resconrec.2017.06.023Open DOISearch in Google Scholar

[7] Shuaib N. A., Mativenga P. T., Kazie J., Job S. Resource efficiency and composite waste in UK supply chain. Procedia CIRP 2015:29:662–667. doi:10.1016/j.procir.2015.02.04210.1016/j.procir.2015.02.042Open DOISearch in Google Scholar

[8] Nilakantan G., Nutt S. Reuse and upcycling of aerospace prepreg scrap and waste. Reinforced Plastics 2015:59:44–51. doi:10.1016/j.repl.2014.12.07010.1016/j.repl.2014.12.070Search in Google Scholar

[9] Lefeuvre A., Garnier S., Jacquemin L., Pillain B., Sonnemann G. Anticipating in-use stocks of carbon fibre reinforced polymers and related waste generated by the wind power sector until 2050. Resources, Conservation and Recycling 2019:141:30–39. doi:10.1016/j.resconrec.2018.10.00810.1016/j.resconrec.2018.10.008Open DOISearch in Google Scholar

[10] Vijay N., Rajkumara V., Bhattacharjee P. Assessment of Composite Waste Disposal in Aerospace Industries. Procedia Environmental Sciences 2016:35:563–570. doi:10.1016/j.proenv.2016.07.04110.1016/j.proenv.2016.07.041Search in Google Scholar

[11] Shuaib N. A., Mativenga P. T. Energy demand in mechanical recycling of glass fibre reinforced thermoset plastic composites. Journal of Cleaner Production 2016:120:198–206. doi:10.1016/j.jclepro.2016.01.07010.1016/j.jclepro.2016.01.070Open DOISearch in Google Scholar

[12] Howarth J., Mareddy S. S. R., Mativenga P. T. Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite. Journal of Cleaner Production 2014:81:46–50. doi:10.1016/j.jclepro.2014.06.02310.1016/j.jclepro.2014.06.023Open DOISearch in Google Scholar

[13] Cousins D. S., Suzuki Y., Murray R. E., Samaniuk J. R., Stebner A. P. Recycling glass fiber thermoplastic composites from wind turbine blades. Journal of Cleaner Production 2019:209:1252–1263. doi:10.1016/j.jclepro.2018.10.28610.1016/j.jclepro.2018.10.286Open DOISearch in Google Scholar

[14] Naqvi S. R., Mysore Prabhakara H., Bramer E. A., Dierkes W., Akkermanb R., Brem G. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, Conservation and Recycling 2018:136:118–129. doi:10.1016/j.resconrec.2018.04.01310.1016/j.resconrec.2018.04.013Open DOISearch in Google Scholar

[15] Gharde S., Kandasubramanian B. Mechanothermal and chemical recycling methodologies for the Fibre Reinforced Plastic (FRP). Environmental Technology & Innovation 2019:14:100311. doi:10.1016/j.eti.2019.01.00510.1016/j.eti.2019.01.005Search in Google Scholar

[16] Obunai K., Fukuta T., Ozaki K. Carbon fiber extraction from waste CFRP by microwave irradiation. Composites Part A: Applied Science and Manufacturing 2015:78:160–165. doi:10.1016/j.compositesa.2015.08.01210.1016/j.compositesa.2015.08.012Open DOISearch in Google Scholar

[17] Jiang G., Pickering S. J., Walker G. S., Wong K. H., Rudd C. D. Surface characterisation of carbon fibre recycled using fluidised bed. Applied Surface Science 2008:254:2588–2593. doi:10.1016/j.apsusc.2007.09.10510.1016/j.apsusc.2007.09.105Open DOISearch in Google Scholar

[18] Ma Y., Nutt, S. Chemical treatment for recycling of amine/epoxy composites at atmospheric pressure. Polymer Degradation and Stability 2018:153:307–317. doi:10.1016/j.polymdegradstab.2018.05.01110.1016/j.polymdegradstab.2018.05.011Open DOISearch in Google Scholar

[19] Dang W., Kubouchi M., Sembokuya H., Tsuda K. Chemical recycling of glass fiber reinforced epoxy resin cured with amine using nitric acid. Polymer 2005:46(6):1905–1912. doi:10.1016/j.polymer.2004.12.03510.1016/j.polymer.2004.12.035Open DOISearch in Google Scholar

[20] Khalil Y. F. Sustainability assessment of solvolysis using supercritical fluids for carbon fiber reinforced polymers waste management. Sustainable Production and Consumption 2019:17:74–84. doi:10.1016/j.spc.2018.09.00910.1016/j.spc.2018.09.009Open DOISearch in Google Scholar

[21] Sala S., Ciuffo B., Nijkamp P. A systemic framework for sustainability assessment. Ecological Economics 2015:119:314–325. doi:10.1016/j.ecolecon.2015.09.01510.1016/j.ecolecon.2015.09.015Open DOISearch in Google Scholar

[22] Saad M. H., Nazzal M. A., Darras B. M. A general framework for sustainability assessment of manufacturing processes. Ecological Indicators 2019:97:211–224. doi:10.1016/j.ecolind.2018.09.06210.1016/j.ecolind.2018.09.062Open DOISearch in Google Scholar

[23] Singh R. K., Murty H. R., Gupta S. K., Dikshit A. K. An overview of sustainability assessment methodologies. Ecological Indicators 2012:15:281–299. doi:10.1016/j.ecolind.2011.01.00710.1016/j.ecolind.2011.01.007Open DOISearch in Google Scholar

[24] Yeh C. H., Xu Y. Sustainable planning of e-waste recycling activities using fuzzy multicriteria decision making. Journal of Cleaner Production 2013:52:194–204. doi:10.1016/j.jclepro.2013.03.00310.1016/j.jclepro.2013.03.003Open DOISearch in Google Scholar

[25] Kalkanis K., Psomopoulos C. S., Kaminaris S., Ioannidis G., Pachos P. Wind turbine blade composite materials – End of life treatment methods. Energy Procedia 2019:157:1136–1143. doi:10.1016/j.egypro.2018.11.28110.1016/j.egypro.2018.11.281Open DOISearch in Google Scholar

[26] Meng F., McKechnie J., Pickering S. J. An assessment of financial viability of recycled carbon fibre in automotive applications. Composites Part A: Applied Science and Manufacturing 2018:109:207–220. doi:10.1016/j.compositesa.2018.03.01110.1016/j.compositesa.2018.03.011Open DOISearch in Google Scholar

[27] Lee H.-C., Chang C.-T. Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews 2018:92:883–896. doi:10.1016/j.rser.2018.05.00710.1016/j.rser.2018.05.007Open DOISearch in Google Scholar

[28] Suárez Silgado S., Calderón Valdiviezo L., Gassó Domingo S., Roca, X. Multi-criteria decision analysis to assess the environmental and economic performance of using recycled gypsum cement and recycled aggregate to produce concrete: The case of Catalonia (Spain). Resources, Conservation and Recycling 2018:133:120–131. doi:10.1016/j.resconrec.2017.11.02310.1016/j.resconrec.2017.11.023Open DOISearch in Google Scholar

[29] Fu C., Zhou K., Xue M. Fair framework for multiple criteria decision making. Computers & Industrial Engineering 2018:124:379–392. doi:10.1016/j.cie.2018.07.03910.1016/j.cie.2018.07.039Open DOISearch in Google Scholar

[30] Li P., Qian H., Wu J., Chen, J. Erratum to: Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environmental Monitoring and Assessment 2013:185(3):2453–2461. doi:10.1007/s10661-012-2836-110.1007/s10661-012-2836-1Open DOISearch in Google Scholar

[31] Ziemele J., Vigants G., Vitolins V., Blumberga D., Veidenbergs I. District heating systems performance analyses. Heat energy tariff. Environmental and Climate Technologies 2014:13:32–43. doi:10.2478/rtuect-2014-000510.2478/rtuect-2014-0005Open DOISearch in Google Scholar

[32] Cimdina G., Timma L., Veidenbergs I., Blumberga D. Methodologies used for scaling-up from a single energy production unit to state energy sector. Environmental and Climate Technologies 2015:15(1):5–21. doi:10.1515/rtuect-2015-000210.1515/rtuect-2015-0002Open DOISearch in Google Scholar

[33] Aung T. S., Luan S., Xu Q. Application of multi-criteria-decision approach for the analysis of medical waste management systems in Myanmar. Journal of Cleaner Production 2019:222:733–745. doi:10.1016/j.jclepro.2019.03.04910.1016/j.jclepro.2019.03.049Open DOISearch in Google Scholar

[34] Ighravwe D. E., Oke S. A. A multi-criteria decision-making framework for selecting a suitable maintenance strategy for public buildings using sustainability criteria. Journal of Building Engineering 2019:24:100753. doi:10.1016/j.jobe.2019.10075310.1016/j.jobe.2019.100753Search in Google Scholar

[35] Vo Dong P. A., Azzaro-Pantel C., Cadene A. L. Economic and environmental assessment of recovery and disposal pathways for CFRP waste management. Resources, Conservation and Recycling 2018:133:63–75. doi:10.1016/j.resconrec.2018.01.02410.1016/j.resconrec.2018.01.024Open DOISearch in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other