Zacytuj

[1] Scharf M. E., Tartar A. A. Termite digestosomes as sources for novel lignocellulases. Biofuels Bioproducts and Biorefining 2008:2:540–552. doi:10.1002/bbb.10710.1002/bbb.107Open DOISearch in Google Scholar

[2] Jouquet P., Traoré S., Choosai C., Hartmann C., Bignell D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soils Biology 2011:47(4):215–222. doi:10.1016/j.ejsobi.2011.05.00510.1016/j.ejsobi.2011.05.005Open DOISearch in Google Scholar

[3] Crestini C., Crucianelli M., Orlandi M., Saladino R. Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catalysis Today 2010:156(1–2):8–22. doi:10.1016/j.cattod.2010.03.05710.1016/j.cattod.2010.03.057Open DOISearch in Google Scholar

[4] Pérez J., Muñoz-Dorado J., De La Rubia T., Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology 2002:5(2):53–63. doi:10.1007/s10123-002-0062-310.1007/s10123-002-0062-312180781Open DOISearch in Google Scholar

[5] Paliwal R., Rawat A. P., Rawat M., Rai J. P. N. Bioligninolysis: Recent updates for biotechnological solution. Applied Biochemisrty and Biotechnology 2012:167(7):1865–1889. doi:10.1007/s12010-012-9735-310.1007/s12010-012-9735-322639362Open DOISearch in Google Scholar

[6] Kassim A. S. M., Ishak N., Aripin A. M., Zaidel D. N. Potential Lignin Degraders Isolated from the Gut of Rhynchophorus Ferrugineus. International Journal of Sustainable Construction Engineering&Technology 2016:2(1):72–82. doi:10.2991/icmmse-16.2016.2210.2991/icmmse-16.2016.22Open DOISearch in Google Scholar

[7] Fisher A. B., Fong S. S. Lignin biodegradation and industrial implications. AIMS Bioengineering 2014:1(2):92–112. doi:10.3934/bioeng.2014.2.9210.3934/bioeng.2014.2.92Open DOISearch in Google Scholar

[8] Dashtban M., Schraft H., Syed T. A., Qin W. Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemisrty and Molecular Biology 2010:1(1):36–50.Search in Google Scholar

[9] Kumar V., Singh S., Singh O. V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industral Microbiology and Biotechnology 2008:35(5):377–391. doi:10.1007/s10295-008-0327-810.1007/s10295-008-0327-818338189Open DOISearch in Google Scholar

[10] Aunina Z., Bazbauers G., Valters K. Feasibility of Bioethanol Production From Lignocellulosic Biomass. Environmental and Climate Technologies 2010:4(1):11–5. doi:10.2478/v10145-010-0011-x10.2478/v10145-010-0011-xSearch in Google Scholar

[11] Romagnoli F., Blumberga D., Gigli E. Biogas from marine macroalgae: a new environmental technology – life cycle inventory for a further LCA. Environmental and Climate Technologies 2010:4(1):97–108. doi:10.2478/v10145-010-0024-510.2478/v10145-010-0024-5Open DOISearch in Google Scholar

[12] Bugg T. D. H., Ahmad M., Hardiman E. M., Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports 2011:28(12):1883–1896. doi:10.1039/C1NP00042J10.1039/C1NP00042JOpen DOISearch in Google Scholar

[13] Chi Y., Hatakka A., Maijala P. Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? International Biodeterioration&Biodegradation 2007:59(1):32–39. doi:10.1016/j.ibiod.2006.06.02510.1016/j.ibiod.2006.06.025Open DOISearch in Google Scholar

[14] Tuor U., Winterhalter K., Fiechter A. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. Journal of Biotechnology 1995:41(1):1–17. doi:10.1016/0168-1656(95)00042-O10.1016/0168-1656(95)00042-OOpen DOISearch in Google Scholar

[15] Fackler K., Gradinger C., Hinterstoisser B., Messner K., Schwanninger M. Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme and Microbial Technology 2006:39(7):1476–1483. doi:10.1016/j.enzmictec.2006.03.04310.1016/j.enzmictec.2006.03.043Open DOISearch in Google Scholar

[16] Singh P., Sulaiman O., Hashim R., Rupani P. F., Peng L. C. Biopulping of lignocellulosic material using different fungal species: A review. Reviews in Environmental cience and Bio/Technology 2010:9(2):141–151. doi:10.1007/s11157-010-9200-010.1007/s11157-010-9200-0Open DOISearch in Google Scholar

[17] Bugg T. D. H., Ahmad M., Hardiman E. M., Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology 2011:22(3):394–400.10.1016/j.copbio.2010.10.009Search in Google Scholar

[18] Zimmermann W. Degradation of lignin by bacteria. Journal of Biotechnology 1990:13(2–3):119–130. doi:10.1016/0168-1656(90)90098-V10.1016/0168-1656(90)90098-Open DOISearch in Google Scholar

[19] Ahmad M., Taylor C. R., Pink D., Burton K., Eastwood D., Bending G. D., Bugg T. D. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Molecular BioSystems 2010:6(5):815–821. doi:10.1039/b908966g10.1039/b908966g20567767Open DOISearch in Google Scholar

[20] Niladevi K. N., Jacob N., Prema P. Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: Purification and characterization. Process Biochemistry 2008:43(6):654–660. doi:10.1016/j.procbio.2008.02.00210.1016/j.procbio.2008.02.002Open DOISearch in Google Scholar

[21] Bandounas L., Wierckx N. J., De Winde J. H., Ruijssenaars H. J. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology 2011:11(1):94. doi:10.1186/1472-6750-11-9410.1186/1472-6750-11-94321292521995752Open DOISearch in Google Scholar

[22] Erden E., Ucar M. C., Gezer T., Pazarlioglu N. K. Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of Remazole Marine Blue. Brazilian Journal of Microbioloy 2009:40:346–353. doi:10.1590/S1517-83822009000200002610.1590/S1517-838220090002000026376973424031371Open DOISearch in Google Scholar

[23] Obruca S. Marova I., Matouskova P., Haronikova A., Lichnova A. Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiologica 2012:57:221–227. doi:10.1007/s12223-012-0098-510.1007/s12223-012-0098-522488104Open DOISearch in Google Scholar

[24] Chen Y. H., Chai L. Y., Zhu Y. H., Yang Z. H., Zheng Y., Zhang H. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. Journal of Applied Microbiology 2012:112(5):900–906. doi:10.1111/j.1365-2672.2012.05275.x10.1111/j.1365-2672.2012.05275.x22380656Open DOISearch in Google Scholar

[25] Schäfer A., Konrad R., Kuhnigk T., Kämpfer P., Hertel H., König H. Hemicellulose-degrading bacteria and yeasts from the termite gut. Journal of Applied Bacteriology 1996:80(5):471–478. doi:10.1111/j.1365-2672.1996.tb03245.x10.1111/j.1365-2672.1996.tb03245.x9072518Open DOISearch in Google Scholar

[26] Wenzel M., Schönig I., Berchtold M., Kämpfer P., König H. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology 2002:92(1):32–40. doi:10.1046/j.1365-2672.2002.01502.x10.1046/j.1365-2672.2002.01502.x11849325Open DOISearch in Google Scholar

[27] Muwawa E. M., Budambula N. L. M., Osiemo Z. L., Boga H. I., Makonde H. M. Isolation and characterization of some gut microbial symbionts from fungus-cultivating termites (Macrotermes and Odontotermes spp.). African Journal of Microbiology Research 2016:10(26):994–1004.10.5897/AJMR2016.8060Search in Google Scholar

[28] Ramin M., Alimon A. R., Abdullah N. Identification of cellulolytic bacteria isolated from the termite coptotermes curvignathus (Holmgren). Journal of Rapid Methods Automotion in Microbiology 2009:17(1):103–116. doi:10.1111/j.1745-4581.2009.00160.x10.1111/j.1745-4581.2009.00160.xOpen DOISearch in Google Scholar

[29] Raj A., Krishna Reddy M. M., Chandra R.. Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp. International Biodeterioration&Biodegradation 2007:59(4):292–296. doi:10.1016/j.ibiod.2006.09.00610.1016/j.ibiod.2006.09.006Open DOISearch in Google Scholar

[30] Anjaneya O., Souche S. Y., Santoshkumar M., Karegoudar T. B. Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. Journal of Hazardous Materials 2011:190(1–3):351–358. doi:10.1016/j.jhazmat.2011.03.04410.1016/j.jhazmat.2011.03.04421470774Open DOISearch in Google Scholar

[31] Liang B., Lu P., Li, H. Li R., Li S., Huang X. Chemosphere Biodegradation of fomesafen by strain Lysinibacillus sp. ZB-1 isolated from soil. Chemosphere 2009:77(11):1614–1619. doi:10.1016/j.chemosphere.2009.09.03310.1016/j.chemosphere.2009.09.03319846192Open DOISearch in Google Scholar

[32] Chaudhari A. U., Tapase S. R., Markad V. L., Kodam K. M. Simultaneous decolorization of reactive Orange M2R dye and reduction of chromate by Lysinibacillus sp. KMK-A. Journal of Hazardous Materials 2013:262:580–588. doi:10.1016/j.jhazmat.2013.09.00610.1016/j.jhazmat.2013.09.00624095998Open DOISearch in Google Scholar

[33] Saratale R. G., et al. Decolorization and detoxi fi cation of sulfonated azo dye C . I . Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. Journal of Bioscience and Bioengineering 2013:115(6):658–667. doi:10.1016/j.jbiosc.2012.12.00910.1016/j.jbiosc.2012.12.00923321576Open DOISearch in Google Scholar

[34] Taylor C. R., Hardiman E. M, Ahmad M., Sainsbury P. D., Norris P. R., Bugg T. D. H. Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. Journal of Applied Microbiology 2012:113(3):521–530. doi:10.1111/j.1365-2672.2012.05352.x10.1111/j.1365-2672.2012.05352.x22642383Open DOISearch in Google Scholar

[35] Grunwald S., Pilhofer M., Hol, Ll W. Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleoptera: Cerambycidae]. Systematic and Applied Microbiology 2010:33(1):25–34. doi:10.1016/j.syapm.2009.10.00210.1016/j.syapm.2009.10.00219962263Open DOISearch in Google Scholar

[36] Pieper D. H. Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology 2005:67(2):170–191. doi:10.1007/s00253-004-1810-410.1007/s00253-004-1810-415614564Open DOISearch in Google Scholar

[37] Hakala T. K., Lundell T., Galkin S., Maijala P., Kalkkinen N., Hatakka A. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme and Microbial Technology 2005:36(4):461–468. doi:10.1016/j.enzmictec.2004.10.00410.1016/j.enzmictec.2004.10.004Open DOISearch in Google Scholar

[38] Shi Y., Chai L., Tang C., Yang Z., Zheng Y., Chen Y., Jing Q. Biochemical investigation of kraft lignin degradation by pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosystems Engineering 2013:36(12):1957–1965. doi:10.1007/s00449-013-0972-910.1007/s00449-013-0972-9382531723877715Open DOISearch in Google Scholar

[39] Hashimah N., Rahman A, Aini N., Rahman A., Aziz S. A., Hassan M. A. Production of Ligninolytic Enzymes by Newly Isolated Bacteria from Palm Oil Plantation Soils. Bioresources 2013:8:6136–6150.10.15376/biores.8.4.6136-6150Search in Google Scholar

[40] Liew C. Y., Husaini A., Hussain H., Muid , Liew K. C., Roslan H. A. Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi. World Journal of Microbiology and Biotechnology 2011:27(6):1457–1468. doi:10.1007/s11274-010-0598-x10.1007/s11274-010-0598-x25187145Open DOISearch in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other