Zacytuj

[1] Dhaundiyal A., Gupta V. K. The Analysis of Pine Needles as a Substrate for Gasification. J. Water Energy Environ. 2014:15:73-81. doi:10.3126/hn.v15i0.11299Search in Google Scholar

[2] Dhaundiyal A., Tewari P. C. Comparative analysis of pine needles and coal for electricity generation using carbon taxation and emission reductions. Acta Technol. Agric. 2015:18(2):29-35. doi:10.1515/ata-2015-0007Search in Google Scholar

[3] Dhaundiyal A., Tewari P. C. Performance evaluation of throatless gasifier using pine needles as a feedstock for power generation. Acta Technol. Agric. 2016:19(1):10-18. doi:10.1515/ata-2016-0003Search in Google Scholar

[4] Dhaundiyal A., Singh S. B. Distributed activation energy modelling for pyrolysis of forest waste using gaussian distribution. Proc. Latv. Acad. Sci. Sect. B 2016:70(2):64-70. doi:10.1515/prolas-2016-0011Search in Google Scholar

[5] Dhaundiyal A., Tewari P. C. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environment and Climate Technologies 2017:19(1):15-32. doi:10.1515/rtuect-2017-0002Search in Google Scholar

[6] Kader M. A., Islam M. R., Parveen M., Haniu H., Takai K. Pyrolysis decomposition of tamarind seed for alternative fuel. Bioresour. Technol. 2014:149:1-7. doi:10.1016/j.biortech.2013.09.032Search in Google Scholar

[7] Gaqa S., Mamphweli S., Katwire D., Meyer E. Synergistic evaluation of the biomass/coal blends for cogasification purposes. Int. J. Energy Environ. (IJEE) 2014:5(2):251-256.Search in Google Scholar

[8] Vyazovkin S., Wight C. A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochimica acta 1999:340-341:53-68. doi:10.1016/S0040-6031(99)00253-1Search in Google Scholar

[9] Capart R., Khezami L., Burnham A. K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim. Acta 2004:417(1):79-89. doi:10.1016/j.tca.2004.01.029Search in Google Scholar

[10] Conesa J. A., Caballero J. A., Marcilla A., Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim. Acta 1995:254:175-192. doi:10.1016/0040-6031(94)02102-TSearch in Google Scholar

[11] Conesa J. A., Marcilla A., Caballero J. A., Font R. Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. J. Anal. Appl. Pyrolysis 2001:58-59:617-633. doi:10.1016/S0165-2370(00)00130-3Search in Google Scholar

[12] Pysiak J. J., Al.-Badwi Y. A. Kinetic equations for thermal dissociation processes. J. Therm. Anal. Calorim. 2004:76(2):521-528. doi:10.1023/B:JTAN.0000028030.49773.adSearch in Google Scholar

[13] Yaroshenko A. P. Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds. J. Therm. Anal. Calorim. 2005:79(3):515-519. doi:10.1007/s10973-005-0571-3Search in Google Scholar

[14] Criado J. M., Perez-Maqueda L. A. Sample controlled thermal analysis and kinetics. J. Therm. Anal. Calorim. 2005:80(1):27-33. doi:10.1007/s10973-005-0609-6Search in Google Scholar

[15] Burnham A. K., Braun R. L. Global kinetic analysis of complex materials. Energy Fuels 1999:13(1):1-22. doi:10.1021/ef9800765Search in Google Scholar

[16] Burnham A. K., Schmidt B. J., Braun R. L. A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Org. Geochem. 1995:23(10):931-939. doi:10.1016/0146-6380(95)00069-0Search in Google Scholar

[17] Galgano A., Blasi C. D. Modeling Wood Degradation by the Unreacted-Core-Shrinking Approximation. Ind. Eng. Chem. Res. 2003:42(10):2101-2111. doi:10.1021/ie020939oSearch in Google Scholar

[18] Ferdous D., Dalai A. K., Bej S. K., Thring R. W. Pyrolysis of Lignins: Experimental and Kinetics Studies. Energy Fuels 2002:16(6):1405-1412. doi:10.1021/ef0200323Search in Google Scholar

[19] Dhaundiyal A., Singh S. B. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. Biofuels 2017:1-12. doi:10.1080/17597269.2017.1329495Search in Google Scholar

[20] Cai J. M., He F., Yao F. S. Non-isothermal nth-order DAEM equation and its parametric study - Use in the kinetic analysis of biomass pyrolysis. J. Math. Chem. 2006:42(4):949-956. doi:10.1007/s10910-006-9151-4Search in Google Scholar

[21] Dhaundiyal A., Singh S. B. Asymptotic approximations to the distributed activation energy model for non-isothermal pyrolysis of loose biomass using the weibull distribution. Arch. Combust. 2016:36(2):131-146.Search in Google Scholar

[22] Dhaundiyal A., Singh S. B. Approximations to the Non-Isothermal Distributed Activation Energy Model for Biomass Pyrolysis Using the Rayleigh Distribution. Acta Technol. Agric. 2017:20(3):78-84. doi:10.1515/ata-2017-0016Search in Google Scholar

[23] Dhaundiyal A., Singh S. B. Implementation of Fuzzy Sets in the Non-Isothermal Pyrolysis of Biomass. J. Nat. Resour. Dev. 2017:7:30-37.10.5027/jnrd.v7i0.04Search in Google Scholar

[24] Niksa S., Lau C. W. Global rates of devolatilization for various coal types. Combus. Flame 1993:94(3):293-307. doi:10.1016/0010-2180(93)90075-ESearch in Google Scholar

[25] Dhaundiyal A., Singh S. B. Parametric Study of nth Order Distributed Activation Energy Model for Isothermal Pyrolysis of Forest Waste Using Gaussian Distribution. Acta Technologica Agriculturae 2017:20(1):23-28. doi:10.1515/ata-2017-0005Search in Google Scholar

[26] Howard J. B. Fundamentals of Coal Pyrolysis and Hydropyrolysis: Chemistry of Coal Utilization. New York: John Wiley and Sons, 1981.Search in Google Scholar

[27] Vand V. Theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proc. Phys. Soc. Lond. A 1943:55(3):222-246.10.1088/0959-5309/55/3/308Search in Google Scholar

[28] Pitt G. J. The kinetics of the evolution of volatile products from coal. Fuel 1962:41:267-274.Search in Google Scholar

[29] Suuberg E. M. Approximate solution technique for nonisothermal, Gaussian distributed activation energy models. Combust. Flame 1983:50:243-245. doi:10.1016/0010-2180(83)90066-4Search in Google Scholar

[30] Kumar D., Singh S. B. Stochastic Analysis of Complex Repairable System with Deliberate Failure Emphasizing Reboot Delay. Commun. Stat. Simul. Comput. 2016:45(2):583-602. doi:10.1080/03610918.2013.867993Search in Google Scholar

[31] Mangey R., Singh S. B., Singh V. V. Stochastic Analysis of a Standby System with waiting repair strategy. IEEE Trans. Syst. Man Cybern. Syst. 2013:43(3):698-707. doi:10.1109/TSMCA.2012.2217320Search in Google Scholar

[32] Nailwal B., Singh S. B. Performance evaluation and reliability analysis of a complex system with three possibilities in repair with the application of copula. Int. J. Reliab. Appl. 2011:12(1):15-39.Search in Google Scholar

[33] Oakes D. On the preservation of copula structure under truncation. Can. J. Stat. 2005:33(3):465-468. doi:10.1002/cjs.5540330310Search in Google Scholar

[34] de Caprariis B., de Filippis P., Herce C., Verdone N. Double-gaussian distributed activation energy model for coal devolatilization. Energy Fuels 2012:26(10):6153-6159. doi:10.1021/ef301092rSearch in Google Scholar

[35] Zhang J., Chen T., Wu J., Wu J. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere. Bioresour. Technol. 2014:166:87-95. doi:10.1016/j.biortech.2014.05.030Search in Google Scholar

[36] Yang X., Zhang R., Fu J., Geng S., Cheng J. J., Sun Y. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry. Bioresour. Technol. 2014:163:335-342. doi:10.1016/j.biortech.2014.04.040Search in Google Scholar

[37] Quan C., Li A., Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management 2009:29(8):2353-2360. doi:10.1016/j.wasman.2009.03.020.Search in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other