Otwarty dostęp

Small Scale Gasification Application and Perspectives in Circular Economy


Zacytuj

[1] Pike W. J. Another answer. World Oil 2017:6:13. Search in Google Scholar

[2] World Bank. What a Waste. March, 2012 Search in Google Scholar

[3] Hogland M., Berg B., Hogland W., Marques M. Planning of and economic constrains related to a landfill mining project in Norway. Presented at Proceedings of the 12th International Waste Management and Landfill Symposium Sardinia, 2009. Search in Google Scholar

[4] Bosmans A., Helsen L. Energy from waste: review of thermochemical Technologies for refuse derived fuel (RDF) treatment. Presented at Third International Symposium on Energy from Biomass and Waste in Venice, 2010. Search in Google Scholar

[5] Burlakovs J., Kriipsalu M., Arina D., Kaczala F., Shmarin S., Denafas G., Hogland W. Former dump sites and the landfill mining perspectives in Baltic countries and Sweden: The status. Proceedings of the 13th SGEM GeoConference on Science and Technologies in Geology, Exploration and Mining 2013:1:485-492.10.5593/SGEM2013/BA1.V1/S03.035Search in Google Scholar

[6] Hogland W. Remediation of an old landsfill site: Soil analysis, leachate quality and gas production. Environmental Science and Pollution Research International 2002:1:49-54. 10.1007/BF02987426Search in Google Scholar

[7] Hogland M., Hogland W., Marques M. Enhanced Landfill Mining: Material recovery, energy utilisation and economics in the EU (Directive) perspective. Presented at International Academic Symposium on Enhanced Landfill Mining, 2010. Search in Google Scholar

[8] Jannelli E., Minutillo M. Simulation of the flue gas cleaning system of an RDF incineration power plant. Waste Management 2007:27:684-690. doi:10.1016/j.wasman.2006.03.017 10.1016/j.wasman.2006.03.017Search in Google Scholar

[9] Belgiorno V., De Feo G., Della Rocca C., Napoli R. M. A. Energy from gasification of solid wastes. Waste Management 2003:23:1-15. doi:10.1016/S0956-053X(02)00149-6 10.1016/S0956-053X(02)00149-6Open DOISearch in Google Scholar

[10] Castaldi M. J., Themelis N. J. The case for increasing the global capacity for Waste to Energy (WTE). Waste and Biomass Valorization 2010:1:91-105. doi:10.1007/s12649-010-9010-1 10.1007/s12649-010-9010-1Search in Google Scholar

[11] Giugliano M., Grosso M., Rigamonti L. Energy recovery from municipal waste: A case study for a middle-sized Italian district. Waste Management 2008:28(1):39-50. doi:10.1016/j.wasman.2006.12.018 10.1016/j.wasman.2006.12.018Open DOISearch in Google Scholar

[12] Polettini A. State of the knowledge and research needs in bottom ash management. Presented at Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 2009. Search in Google Scholar

[13] Dijkstra J. J., van der Sloot H. A., Comans R. N. J. Process identification and model development of contaminant transport in MSWI bottom ash. Waste Management 2002:22(2):531-541. 10.1016/S0956-053X(01)00034-4Search in Google Scholar

[14] Kosson D. S., van der Sloot H. A., Sanchez F., Garrabrants A. C. An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science 2002:19:159-204. doi:10.1089/109287502760079188 10.1089/109287502760079188Open DOISearch in Google Scholar

[15] Ecke H., Aberg A. Quantification of the effects of environmental leaching factors on emissions from bottom ash in road construction. Science of the Total Environment 2006:362:42-49. doi:10.1016/j.scitotenv.2005.09.057 10.1016/j.scitotenv.2005.09.057Open DOISearch in Google Scholar

[16] Chang N., Wang H. P., Huang W. L., Lin K. S. The assessment of reuse potential for municipal solid waste and refuse-derived fuel incineration ashes. Resource Conservation and. Recycling 1999:25:255-270. 10.1016/S0921-3449(98)00066-4Search in Google Scholar

[17] Onori R., Polettini A., Pomi R. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends. Waste Management 2011:31(2):298-310. doi:10.1016/j.wasman.2010.05.021 10.1016/j.wasman.2010.05.021Open DOISearch in Google Scholar

[18] Travar I., Lidelow S., Andreas L., Tham G., Lagerkvist A. Assessing the environmental impact of ashes used in a landfill cover construction. Waste Management 2011:29(4):1336-1346. doi:10.1016/j.wasman.2008.09.009 10.1016/j.wasman.2008.09.009Open DOISearch in Google Scholar

[19] Baciocch R., Cost G., Lategan E., Marini C., Polettini A., Pomi R., Postorino P., Rocca S. Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Management 2010:30(7):1310-1317. doi:10.1016/j.wasman.2009.11.027 10.1016/j.wasman.2009.11.027Open DOISearch in Google Scholar

[20] Sivula L., Ilander A., Vaisanen A., Rintala J. Weathering of gasification and grate bottom ash in anaerobic conditions. Journal of Hazardous Materials 2010:174(1-3):344-351. doi:10.1016/j.jhazmat.2009.09.056 10.1016/j.jhazmat.2009.09.056Open DOISearch in Google Scholar

[21] Gori M., Piffer, L., Sirini P. Leaching behaviour of bottom ash from RDF high-temperature gasification plants. Waste Management 2011:31:1514-1521. doi:10.1016/j.wasman.2011.03.009 10.1016/j.wasman.2011.03.009Open DOISearch in Google Scholar

[22] Hogland M., Arina D., Kriipsalu M., Jani Y., Kaczala F., Salomao A. L., Orupold K., Pehme K. M., Rudovica V., Denafas G., Burlakovs J., Vincevica-Gaile Z., Hogland W. Remarks on four novel landfill mining case studies in Estonia and Sweden. Journal of Material Cycles and Waste Management 2018:20(2):1355-1363. doi:10.1007/s10163-017-0683-4 10.1007/s10163-017-0683-4Open DOISearch in Google Scholar

[23] McKendry P. Energy production from biomass (part 3): Gasification Technologies. Bioresource Technology 2002:83(1):55-63. doi:10.1016/S0960-8524(01)00120-1 10.1016/S0960-8524(01)00120-1Open DOISearch in Google Scholar

[24] Basu P. Biomass gasification and pyrolysis. New York: Elsevier; 2010. Search in Google Scholar

[25] De Souza-Santos M. L. Solid fuels combustion and gasification, 2nd ed. USA: CRC Press, 2010. 10.1201/9781420047509Search in Google Scholar

[26] Hla S. S., Roberts D. G., Harris D. J. A numerical model for understanding the behaviour of coals in an entrained-flow gasifier. Fuel Processing Technology 2015:134:424-440. doi:10.1016/j.fuproc.2014.12.053 10.1016/j.fuproc.2014.12.053Open DOISearch in Google Scholar

[27] Knoef H. A. M. Inventory of biomass gasifier manufacturers and installations. Final Report to European Commission. Enschede: University of Twente, 2000. Search in Google Scholar

[28] Bridgwater A. V. The Future for biomass pyrolysis and gasification: status, opportunities and policies for Europe. Ashton University, 2002. Search in Google Scholar

[29] La Villetta M., Costab M., Massarotti N. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renewable and Sustainable Energy Reviews 2017:74:71-88. doi:10.1016/j.rser.2017.02.027 10.1016/j.rser.2017.02.027Open DOISearch in Google Scholar

[30] Arena U. Process and technological aspects of municipal solid waste gasification. A review. Waste Management 2012:32:625-639. doi:10.1016/j.wasman.2011.09.025 10.1016/j.wasman.2011.09.025Open DOISearch in Google Scholar

[31] Worrell W. A., Vesilind P. A. Solid Waste Engineering. 2th Edition. Stamford: Cengage Learning, 2012. Search in Google Scholar

[32] Ciferno J. P., Marano J. J. Benchmarking Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production. Prepared for U.S. Pittsburgh: Department of Energy, 2002. Search in Google Scholar

[33] Franco C., Pinto F., Gulyurtlu I., Cabrita I. The study of reactions influencing the biomass steam gasification process. Fuel 2003: 82: 835-842. doi:10.1016/S0016-2361(02)00313-7 10.1016/S0016-2361(02)00313-7Open DOISearch in Google Scholar

[34] Phillips J. Different types of gasifiers and their integration with gas turbines. The Gas Turbine Handbook. Morgantown: National Energy Technology Laboratory, 2006.Search in Google Scholar

[35] Richardson Y., Blin J., Julbe A. A short overview on purification and conditioning of syngas produced by biomass gasification: catalytic strategies, process intensification and new concepts. Progress in Energy and Combustion Science 2012:38(6):765-781. doi:10.1016/j.pecs.2011.12.001 10.1016/j.pecs.2011.12.001Open DOISearch in Google Scholar

[36] Nand S., Mohammad J., Reddy S. N., Kozinski J. A., Dalai A. K. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefining 2014:4(2):157-191. doi:10.1016/j.pecs.2011.12.001 10.1016/j.pecs.2011.12.001Open DOISearch in Google Scholar

[37] Subramani V., Gangwal S. K. A review of recent literature to search for an efficient catalytic. Process for the conversion of syngas to ethanol. Energy Fuels 2008:22(2):814-839. doi:10.1021/ef700411x 10.1021/ef700411xOpen DOISearch in Google Scholar

[38] Griffin D. W., Schultz M. A. Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environmental Progress and Sustainable Energy 2012:31(2):219-224. doi:10.1002/ep.11613 10.1002/ep.11613Open DOISearch in Google Scholar

[39] Craig K. R., Mann M. K. Cost and performance analysis of biomass-based integrated gasification combined-cycle (BIGCC) power systems. NREL/TP-430-21657. Golden: National Renewable Energy Laboratory, 1996. 10.2172/419974Search in Google Scholar

[40] Nickerson T. A., Hathaway B. J., Smith T. M., Davidson J. H. Economic assessment of solar and conventional biomass gasification technologies: Financial and policy implications under feedstock and product gas price uncertainty. Biomass and Bioenergy 2015:74:47-57. doi:10.1016/j.biombioe.2015.01.002 10.1016/j.biombioe.2015.01.002Open DOISearch in Google Scholar

[41] Bridgwater A. V. Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal 2003:91(2-3):87-102. doi:10.1016/S1385-8947(02)00142-0 10.1016/S1385-8947(02)00142-0Open DOISearch in Google Scholar

[42] Buragohain B., Mahanta P., Moholkar V. S. Biomass gasification for decentralized power generation:the Indian perspective. Renewable and Sustainable Energy Reviews 2010:14:73-92. doi:10.1016/j.rser.2009.07.034 10.1016/j.rser.2009.07.034Open DOISearch in Google Scholar

[43] Tapas K. P., Pratik N. Sheth N. Biomass gasification models for downdraft gasifier: A state-of-the-art review. Renewable and Sustainable Energy Reviews 2015:50:583-593. doi:10.1016/j.rser.2015.05.012 10.1016/j.rser.2015.05.012Open DOISearch in Google Scholar

[44] Salaices E. Catalytic steam gasification of biomass surrogates: a thermodynamic and kinetic approach. The University of Western Ontario, 2010. Search in Google Scholar

[45] Huber G. W., Iborra S., Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews 2006:106:4044-4098. doi:10.1021/cr068360d 10.1021/cr068360dOpen DOISearch in Google Scholar

[46] Dhepe P. L., Fukuoka A. Cellulose conversion under heterogeneous catalysis. ChemSusChem 2008:1:969-975. doi:10.1002/cssc.200800129 10.1002/cssc.200800129Open DOISearch in Google Scholar

[47] Klimantos P., Koukouzas N., Katsiadakis A., Kakaras E. Air-blown biomass gasification combined cycles (BGCC): system analysis and economic assessment. Energy 2009:34(5):708-714. doi:10.1016/j.energy.2008.04.009 10.1016/j.energy.2008.04.009Open DOISearch in Google Scholar

[48] Chaiwat W., Hasegawa I., Mae K. Examination of the low-temperature region in a downdraft gasifier for the pyrolysis product analysis of biomass air gasification. Industrial Engineering and Chemistry Research 2009:48:8934-8943. 10.1021/ie900264nSearch in Google Scholar

[49] Sheth P. N., Babu B. V. Experimental studies on producer gas generation from wood waste in a down draft biomass gasifier. Bioresource Technology 2009:100(3):127-133. doi:10.1016/j.biortech.2009.01.024 10.1016/j.biortech.2009.01.024Open DOISearch in Google Scholar

[50] Khan A. A., de Jong W., Jansens P. J., Spliethoff H. Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Processing Technology 2009:90:21-50. doi:10.1016/j.fuproc.2008.07.012 10.1016/j.fuproc.2008.07.012Open DOISearch in Google Scholar

[51] Warnecke R. Gasification of biomass:comparison of fixed bed and fluidized bed gasifier. Biomass and Bioenergy 2000:18:489-497. doi:10.1016/S0961-9534(00)00009-X 10.1016/S0961-9534(00)00009-XOpen DOISearch in Google Scholar

[52] Demirbas A. Trace element concentrations in ashes from various types of lichen biomass species. Energy Sources 2004:26:499-506. doi:10.1080/00908310490429687 10.1080/00908310490429687Open DOISearch in Google Scholar

[53] Chan F. L., Tanksale A. Review of recent developments in Ni-based catalysts for biomass gasification. Renewable and Sustainable Energy Reviews 2014:38:428-438. doi:10.1016/j.rser.2014.06.011 10.1016/j.rser.2014.06.011Open DOISearch in Google Scholar

[54] Sutton D., Kelleher B., Ross J. R. H. Review of literature on catalysts for biomass gasification, Fuel Processing Technology 2001:73(3):155-173. doi:10.1016/S0378-3820(01)00208-9 10.1016/S0378-3820(01)00208-9Open DOISearch in Google Scholar

[55] Devi L., Ptasinski K. J., Janssen F. J. J. G. A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 2003:24:125-140. doi:10.1016/S0961-9534(02)00102-2 10.1016/S0961-9534(02)00102-2Open DOISearch in Google Scholar

[56] Rehling B., Hofbauer H., Rauch R., Tremmel H., Aichernig C., Schildhauer T. Bio-SNG-first results of the 1MW pilot and demonstration unit at Güssing, 2009. Search in Google Scholar

[57] Hermana A. P., Yusupa S., Shahbaza M., Patricka S. O., Khan Z., Yusup S., Ahmad M. M., Rashidi N. A. Integrated catalytic adsorption (ICA) steam gasification system for enhanced hydrogen production using palm kernel shell. International Journal of Hydrogen Energy 2014:39:3286-3293. doi:10.1016/j.enconman.2014.03.024 10.1016/j.enconman.2014.03.024Open DOISearch in Google Scholar

[58] Summary of Qualifications. Westinghouse Plasma Gasification Technology. Madison: Westinghouse Plasma Corporation, 2014. Search in Google Scholar

[59] Wiedinmyer C., Yokelson R. J., Gullet B. K. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Environmental Science and Technology 2014:48(16):9523-9530. doi:10.1021/es502250z 10.1021/es502250zOpen DOISearch in Google Scholar

[60] Smith L., Sengupta D., Takkellapati S., Lee. C. C. An industrial ecology approach to municipal solid wastemanagement: II. Case studies for recovering energy from the organicfraction of MSW. Resources, Conservation and Recycling 2015:104:317-326. doi:10.1016/j.resconrec.2015.05.016 10.1016/j.resconrec.2015.05.016Open DOISearch in Google Scholar

[61] BP Statistical review of world energy. London: Pureprint Group Ltd, 2013. Search in Google Scholar

[62] European Enhanced Landfill Mining Consortium [Online]. [Accessed: 10.09.2017] Available: https://www.eurelco.org/ Search in Google Scholar

[63] Higman C., van der Burgt M. Gasification, 2th Edition. Houston: Gulf Professional Publishing, 2008. Search in Google Scholar

[64] Brown R. C., Biomass refineries based on hybrid thermochemical-biological processing an overview. Biorefineries - Industrial Processes and Products: Status Quo and Future Directions. Weinheim: Wiley-VCH Verlag GmbH & Co.KG, 2006. Search in Google Scholar

[65] Milne T. A., Elam C. C., Evans R. J. Hydrogen from biomass. State of the art and research challenges. IEA/H2/TR-02/001. Golden: National Renewable Energy Laboratory, 2002. 10.2172/792221Search in Google Scholar

[66] Sims R., Taylor M., Saddler J., Mabee W. From 1st- to 2nd-generation biofuel technologies. An overview of current industry and RD&D activities. International Energy Agency, 2008. Search in Google Scholar

[67] Gil J. El problema de los alquitranes en la gasificaci on de biomasa, Infopower (in Spanish). Actual. Tecnol. Prod. uso Efic. energía 2005:79:88-94. Search in Google Scholar

[68] Milne T. A., Evans R. J., Abatzoglou N. Biomass gasifier “tars”: their nature, formation, and conversion. NREL/TP-570-25357. Golden: National Renewable Energy Laboratory, 1998. Search in Google Scholar

[69] Li C., Suzuki K. Tar property, analysis, reforming mechanism and model for biomass gasification-An overview. Renewable and Sustainable Energy Review 2009:13(3):594-604. doi:10.1016/j.rser.2008.01.009 10.1016/j.rser.2008.01.009Open DOISearch in Google Scholar

[70] Reed T. B., Das A., Handbook of biomass downdraft gasifier engine systems. Washington: U.S. Government Printing Office, 1988. 10.2172/5206099Search in Google Scholar

[71] Hindsgaul C., Schramm J., Gratz L., Henriksen U., Bentzen J. Physical and chemical characterization of particles in producer gas from wood chips. Bioresource Technology 2000:73:147-155. doi:10.1016/S0960-8524(99)00153-4 10.1016/S0960-8524(99)00153-4Open DOISearch in Google Scholar

[72] Fitzpatrick E. M., Bartle K. D., Kubacki M. L., Jones J. M., Pourkashanian M., Ross A. B. The mechanism of the formation of gasification particles and other pollutants during the co-firing of coal and pinewood in a fixed bed combustor. Fuel 2009:88 (12):2409-2417. doi:10.1016/j.fuel.2009.02.037 10.1016/j.fuel.2009.02.037Open DOISearch in Google Scholar

[73] Kozinski J. A., Saade R. Effect of biomass burning on the formation of gasification particles and heavy hydrocarbons. Fuel 1998:77(4):225-231. doi:10.1016/S0016-2361(97)00201-9 10.1016/S0016-2361(97)00201-9Open DOISearch in Google Scholar

[74] Turn S. Q., Kinoshita C. M., Ishimura D. M., Zhou J. The fate of inorganic constituents of biomass in fluidized bed gasification. Fuel 1998:77(3):35-146. doi:10.1016/S0016-2361(97)00190-7 10.1016/S0016-2361(97)00190-7Open DOISearch in Google Scholar

[75] Tammeorg P., Bastos A., Jeffery S., Rees F., Juergen K., Graber E., Ventura M., Kibblewhite M., Amaro A., Budai A., Cordovil C., Domene X., Gardi C., Gasco G., Horak J., Kammann C., Kondrlova E., Laird D., Loureiro S., Martins M. Biochars in soils: towards the required level of scientific understanding. Journal of Environmental Engineering and Landscape Management 2016:25(2):192-207. doi:10.3846/16486897.2016.1239582 10.3846/16486897.2016.1239582Open DOISearch in Google Scholar

[76] Komkiene J., Baltrenaite E. Biochar as adsorbent for removal of heavy metal ions (cadmium(II), copper(II), lead(II), zinc(II)) from aqueous phase. International Journal of Environmental Science and Technology 2016:13(2):471-482. doi:10.1007/s13762-015-0873-3 10.1007/s13762-015-0873-3Open DOISearch in Google Scholar

[77] Hilber I., Bastos A., Loureiro S., Soja G., Marsz A., Cornelissen G., Bucheli T. The different faces of biochar: contamination risk versus remediation tool. Journal of Environmental Engineering and Landscape Management 2017:86-104. doi:10.3846/16486897.2016.1254089 10.3846/16486897.2016.1254089Open DOISearch in Google Scholar

[78] Hafshejani L. D., Hooshmand A., Naseri A. A., Mohammadi A. S., Abbasi F., Bhatnagar A. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering 2016:95:101-111. doi:10.1016/j.ecoleng.2016.06.035 10.1016/j.ecoleng.2016.06.035Open DOISearch in Google Scholar

[79] Verheijen F., Mankasingh U., Penizek V., Panzacchi P., Glaser B., Jeffery S., Bastos A., Tammeorg P., Kern J., Zavalloni C., Zanchettin G., Sakrabani R. Representativeness of European biochar research: part I-field experiments. Journal of Environmental Engineering and Landscape Management 2017:25(2):140-151. doi:10.3846/16486897.2017.1304943 10.3846/16486897.2017.1304943Open DOISearch in Google Scholar

[80] Baltrenaite E., Baltrenas P., Bhatnagar A., Vilppo T., Selenius M., Koistinen A., Dahl M. Penttinen O. P. A multicomponent approach to using waste-derived biochar in biofiltration: A case study based on dissimilar types of waste. International Biodeterioration & Biodegradation 2016:119:565-576. doi:10.1016/j.ibiod.2016.10.056 10.1016/j.ibiod.2016.10.056Open DOISearch in Google Scholar

[81] Galhetas M., Lopes H., Freire M., Abelha P., Pinto F., Gulyurtlu I. Characterization, leachability and valorization through combustion of residual chars from gasification of coals with pine. Waste Management 2012:32:769-779. 10.1016/j.wasman.2011.08.021Search in Google Scholar

[82] Garcia-Garcia A., Gregorio A., Franco C., Pinto F., Boavida D., Gulyurtlu I. Unconverted chars obtained during biomass gasification on a pilot-scale gasifier as a source of activated carbon production. Bioresource Technology 2003:88(1):27-32. doi:10.1016/S0960-8524(02)00266-3 10.1016/S0960-8524(02)00266-3Open DOISearch in Google Scholar

[83] Boateng A., Cooke P., Hicks K. Microstructure development of chars derived from high-temperature pyrolysis of barley (Hordeum vulgare L.) hulls. Fuel 2007:86(5-6):735-742. doi:10.1016/j.fuel.2006.08.024 10.1016/j.fuel.2006.08.024Open DOISearch in Google Scholar

[84] Alburquerque J. A., Sanchez M. E., Manuel-Barr V. Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 2. Char characterisation for carbon sequestration and agricultural uses. Journal of Cleaner Production 2016:120:191-197. doi:10.1016/j.jclepro.2014.10.080 10.1016/j.jclepro.2014.10.080Open DOISearch in Google Scholar

[85] Abu El-Rub Z., Bramer E. A., Brem G. Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel 2008:87:2243-2252. doi:10.1016/j.fuel.2008.01.004 10.1016/j.fuel.2008.01.004Open DOISearch in Google Scholar

[86] Byrne J. F., Marsh H. Introductory overview. Porosity in Carbons: Characterization and Applications. London: Edward Arnold, 1995.Search in Google Scholar

[87] Fernandez L. Reduccion de la sinterizacion en la ceniza de biomasa en combustion. Aplicacion al lecho fluidizado burbujeante (in Spanish). Doctoral Thesis. University of Valladolid, 2004. Search in Google Scholar

[88] Hernandez J. J., Ballesteros R., Aranda G. Characterisation of tars from biomass gasification: effect of the operating conditions. Energy 2013:50:333-342. doi:10.1016/j.energy.2012.12.005 10.1016/j.energy.2012.12.005Open DOISearch in Google Scholar

[89] Di Gianfilippo M., Costa G., Verginelli I., Gavasci R., Lombardi F. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests. Waste Management 2016:56:216-228. doi:10.1016/j.wasman.2016.07.034 10.1016/j.wasman.2016.07.034Open DOISearch in Google Scholar

[90] Forteza R., Far M., Seguı C., Cerda V. Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Management 2004:24(9):899-909. doi:10.1016/j.wasman.2004.07.004 10.1016/j.wasman.2004.07.004Open DOISearch in Google Scholar

[91] Petkovic G., Engelsen C. J., Haoya A. O., Breedveld G. Environmental impact from the use of recycled materials in road construction: method for decisionmaking in Norway. Resource Conservation and Recycling 2004:42(3):249-264. 10.1016/j.resconrec.2004.04.004Search in Google Scholar

[92] Das B., Prakash S., Reddy P. S. R., Misra V. N. An overview of utilization of slag and sludge from steel industries. Resource Conservation and Recycling 2007:50(1):40-57. doi:10.1016/j.resconrec.2006.05.008 10.1016/j.resconrec.2006.05.008Open DOISearch in Google Scholar

[93] Huang Y., Bird R.N., Heidrich O. A review of the use of recycled solid waste materials in asphalt pavements. Resource Conservation and Recycling 2007:52(1):58-73. doi:10.1016/j.resconrec.2007.02.002 10.1016/j.resconrec.2007.02.002Open DOISearch in Google Scholar

[94] Van der Sloot H. A. Developments in evaluating environmental impact from utilization of bulk inert wastes using laboratory leaching tests and field verification. Waste Management 1996:16(1):65-81. doi:10.1016/S0956-053X(96)00028-1 10.1016/S0956-053X(96)00028-1Open DOISearch in Google Scholar

[95] Dincer I. Exergy as a potential tool for sustainable drying systems. Sustainable Cities and Society 2011:1(2):91-96. doi:10.1016/j.scs.2011.04.001 10.1016/j.scs.2011.04.001Open DOISearch in Google Scholar

[96] Rosen M. A., Dincer I., Kanoglu M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 2008:36(1):128-37. doi:10.1016/j.enpol.2007.09.006 10.1016/j.enpol.2007.09.006Open DOISearch in Google Scholar

[97] Sciubba E., Wall G. A brief commented history of exergy from the beginnings to 2004. International Journal of Thermodynamics 2007:10(1):1-26. Search in Google Scholar

[98] Asprion N., Rumpf B., Gritsch A. Work flow in process development for energy efficient processes. Applied Thermal Engineering 2011:31(13):2067-2072. doi:10.1016/j.applthermaleng.2010.11.028 10.1016/j.applthermaleng.2010.11.028Open DOISearch in Google Scholar

[99] Iribarren D., Susmozas A., Petrakopoulou F., Dufour J. Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. Journal of Cleaner Production 2014:69:165-175. doi:10.1016/j.jclepro.2014.01.068 10.1016/j.jclepro.2014.01.068Open DOISearch in Google Scholar

[100] Ptasinski K. J., Prins M. J., Pierik A. Exergetic evaluation of biomass gasification. Energy 2007:32(4):568-574. doi:10.1016/j.energy.2006.06.024 10.1016/j.energy.2006.06.024Open DOISearch in Google Scholar

[101] Saidur R., Boroumandjazi G., Mekhilef S., Mohammed H. A. A review on exergy analysis of biomass based fuels. Renewable and Sustainable Energy Reviews 2012:16(2):1217-1222. doi:10.1016/j.rser.2011.07.076 10.1016/j.rser.2011.07.076Open DOISearch in Google Scholar

[102] Sreejith C. C., Muraleedharan C., Arun P. Energy and exergy analysis of steam gasification of biomass materials: a comparative study. International Journal of Ambient Energy 2013:34(1):35-52. doi:0.1080/01430750.2012.711085 10.1080/01430750.2012.711085Search in Google Scholar

[103] Parvez A. M., Mujtaba I. M., Wu T. Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification. Energy 2016:94:579-588. doi:10.1016/j.energy.2015.11.022 10.1016/j.energy.2015.11.022Open DOISearch in Google Scholar

[104] Elsner W., Wysocki M., Niegodajew a P., Borecki R. Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine. Applied Energy 2017:202:213-227. doi:10.1016/j.apenergy.2017.05.148 10.1016/j.apenergy.2017.05.148Open DOISearch in Google Scholar

[105] Algieri A., Morrone P. Energetic analysis of biomass-fired ORC systems for micro-scale combined heat and power (CHP) generation. A possible application to the Italian residential sector. Applied Thermal Engineering 2014:71(2):751-759. doi:10.1016/j.applthermaleng.2013.11.024 10.1016/j.applthermaleng.2013.11.024Open DOISearch in Google Scholar

[106] Martelli E., Amaldi E., Consonni S. Numerical optimization of heat recovery steam cycles: mathematical model, two-stage algorithm and applications. Computational Chemical Engineering 2011:35:2799-2823. doi:10.1016/j.compchemeng.2011.04.015 10.1016/j.compchemeng.2011.04.015Open DOISearch in Google Scholar

[107] Sansiribhan S., Rattanathanaophat A., Nuengchaknin C. Feasibility study of potential and economic of rice straw VSPP power plant in Thailand. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering 2014:8:1539-1541Search in Google Scholar

eISSN:
2255-8837
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other