This work is licensed under the Creative Commons Attribution 4.0 International License.
Kovacs GG. Concepts and classification of neurodegenerative diseases. Handb Clin Neurol, vol. 145, Elsevier; 2018, p. 301-7. DOI: 10.1016/B978-0-12-802395-2.00021-3Search in Google Scholar
Neumann H, Kotter MR, Franklin RJM. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009;132:288-95. DOI: 10.1093/brain/awn109Search in Google Scholar
Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol 2014;32:367-402. DOI: 10.1146/annurev-immunol-032713-120240Search in Google Scholar
Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 2010;68:930-41. DOI: 10.1016/j. biopsych.2010.06.012Search in Google Scholar
Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y. Aberrations in Peripheral Inflammatory Cytokine Levels in Parkinson Disease: A Systematic Review and Meta-analysis. JAMA Neurol 2016;73:1316-24. DOI: 10.1001/jamaneurol.2016.2742Search in Google Scholar
Li X, Zhou JX, Qu YD, Kuang X. Сyclooxygenase-2 Inhibitor Parecoxib Reduces LPS-Induced Activation of BV2 Microglia Cells. Bull Exp Biol Med 2023:1-6. DOI: 10.1007/s10517-024-06012-3Search in Google Scholar
Oeckl P, Steinacker P, von Arnim CA, Straub S, Nagl M, Feneberg E, et al. Intact protein analysis of ubiquitin in cerebrospinal fluid by multiple reaction monitoring reveals differences in Alzheimer’s disease and frontotemporal lobar degeneration. J Proteome Res 2014;13:4518-25. DOI: 10.1021/pr5006058Search in Google Scholar
Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni MG. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Front Cell Neurosci 2014;8:380. DOI: 10.3389/fncel.2014.00380Search in Google Scholar
Nam HY, Nam JH, Yoon G, Lee JY, Nam Y, Kang HJ, et al. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. J Neuroinflammation 2018;15:271. DOI: 10.1186/s12974-018-1308-0Search in Google Scholar
Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 2003;25:1106-18. DOI: 10.1002/bies.10357Search in Google Scholar
Inal JM, Hristova M, Lange S. A Pilot Study on Peptidylarginine Deiminases and Protein Deimination in Animal Cancers across Vertebrate Species. Int J Mol Sci 2022;23:8697. DOI: 10.3390/ijms23158697Search in Google Scholar
Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol 2011;48:1592-603. DOI: 10.1016/j. molimm.2011.04.003Search in Google Scholar
Magnadottir B, Hayes P, Gisladottir B, Bragason Bt, Hristova M, Nicholas AP, et al. Pentraxins CRP-I and CRP-II are post-translationally deiminated and differ in tissue specificity in cod (Gadus morhua L.) ontogeny. Dev Comp Immunol 2018;87:1-11. DOI: 10.1016/j.dci.2018.05.014Search in Google Scholar
Braig D, Nero TL, Koch HG, Kaiser B, Wang X, Thiele JR, et al. Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nat Commun 2017;8:14188. DOI: 10.1038/ncomms14188Search in Google Scholar
Janelidze S, Lindqvist D, Francardo V, Hall S, Zetterberg H, Blennow K, et al. Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology 2015;85:1834-42. DOI: 10.1212/WNL.0000000000002151Search in Google Scholar
Nicholas AP. Dual immunofluorescence study of citrullinated proteins in Parkinson diseased substantia nigra. Neurosci Lett 2011;495:26-9. DOI: 10.1016/j.neulet.2011.03.028Search in Google Scholar
Tai Y, Qiu Y, Bao Z. Magnesium Lithospermate B Suppresses Lipopolysaccharide-Induced Neuroinflammation in BV2 Microglial Cells and Attenuates Neurodegeneration in Lipopolysaccharide-Injected Mice. J Mol Neurosci 2018;64:80-92. DOI: 10.1007/s12031-017-1007-9Search in Google Scholar
Sun Y, Gao L, Hou W, Wu J. beta-Sitosterol Alleviates Inflammatory Response via Inhibiting the Activation of ERK/p38 and NF-kappaB Pathways in LPS-Exposed BV2 Cells. Biomed Res Int 2020;2020:7532306. DOI: 10.1155/2020/7532306Search in Google Scholar
Qin Y, Qiu J, Wang P, Liu J, Zhao Y, Jiang F, et al. Impaired autophagy in microglia aggravates dopaminergic neurodegeneration by regulating NLRP3 inflammasome activation in experimental models of Parkinson’s disease. Brain Behav Immun 2021;91:324-38. DOI: 10.1016/j.bbi.2020.10.010Search in Google Scholar
Nguyen PL, Bui BP, Duong MTH, Lee K, Ahn H-C, Cho J. Suppression of LPS-induced inflammation and cell migration by azelastine through inhibition of JNK/NF-κB pathway in BV2 microglial cells. Int J Mol Sci 2021;22:9061. DOI: 10.3390/ijms22169061Search in Google Scholar
Kaneko N, Kudo K, Mabuchi T, Takemoto K, Fujimaki K, Wati H, et al. Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology 2006;31:2619-26. DOI: 10.1038/sj.npp.1301137Search in Google Scholar
Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005;5:526-42. DOI: 10.1038/nrc1649Search in Google Scholar
Witalison EE, Thompson PR, Hofseth LJ. Protein Arginine Deiminases and Associated Citrullination: Physiological Functions and Diseases Associated with Dysregulation. Curr Drug Targets 2015;16:700-10. DOI: 10.2174/1389450116666150202160954Search in Google Scholar
Nicholas AP, Lu L, Heaven M, Kadish I, van Groen T, Accaviti-Loper MA, et al. Ongoing studies of deimination in neurodegenerative diseases using the F95 antibody. Protein Deimination in Human Health and Disease 2014:257-80. DOI: 10.1007/978-1-4614-8317-5_14Search in Google Scholar
Sancandi M, Uysal-Onganer P, Kraev I, Mercer A, Lange S. Protein Deimination Signatures in Plasma and Plasma-EVs and Protein Deimination in the Brain Vasculature in a Rat Model of Pre-Motor Parkinson’s Disease. Int J Mol Sci 2020;21:2743. DOI: 10.3390/ijms21082743Search in Google Scholar
Ishigami A, Choi EK, Kim YS, Maruyama N. Deimination in Alzheimer’s disease. Protein Deimination in Human Health and Disease 2014:237-55. DOI: 10.1007/978-1-4614-8317-5_13Search in Google Scholar
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegeneration 14: 32 2019. DOI: 10.1186/s13024-019-0333-5Search in Google Scholar
Nicholas AP. Dual immunofluorescence study of citrullinated proteins in Alzheimer diseased frontal cortex. Neurosci Lett 2013;545:107-11. DOI: 10.1016/j.neulet.2013.04.028. DOI: 10.1016/j.neulet.2013.04.028Search in Google Scholar
Morgan AR, Touchard S, Leckey C, O’Hagan C, Nevado-Holgado AJ, Consortium N, et al. Inflammatory biomarkers in Alzheimer’s disease plasma. Alzheimers Dement 2019;15:776-87. DOI: 10.1016/j.jalz.2019.03.007Search in Google Scholar
Jang B, Ishigami A, Maruyama N, Carp RI, Kim YS, Choi EK. Peptidylarginine deiminase and protein citrullination in prion diseases: strong evidence of neurodegeneration. Prion 2013;7:42-6. DOI: 10.4161/pri.22380Search in Google Scholar
Witcher KG, Bray CE, Dziabis JE, McKim DB, Benner BN, Rowe RK, et al. Traumatic brain injury-induced neuronal damage in the somatosensory cortex causes formation of rod-shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia 2018;66:2719-36. DOI: 10.1002/glia.23523Search in Google Scholar
Jang B, Jin JK, Jeon YC, Cho HJ, Ishigami A, Choi KC, et al. Involvement of peptidylarginine deiminase-mediated post-translational citrullination in pathogenesis of sporadic Creutzfeldt-Jakob disease. Acta Neuropathol 2010;119:199-210. DOI: 10.1007/s00401-009-0625-xSearch in Google Scholar
Asaga H, Nakashima K, Senshu T, Ishigami A, Yamada, M. Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J Leukoc Biol 2001;70:46-51. DOI: 10.1189/jlb.70.1.46Search in Google Scholar