This work is licensed under the Creative Commons Attribution 4.0 International License.
Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020 Jan; 395(10219): 200-211. DOI: 10.1016/S0140-6736(19)32989-7Search in Google Scholar
Giamarellos-Bourboulis EJ; European Sepsis Alliance (ESA); Zinkernagel AS; European Society of Clinical Microbiology and Infectious Diseases (ESCMID); De Robertis E; European Society of Anesthesiology and Intensive Care (ESAIC); et al. Sepsis, a call for inclusion in the work plan of the European Center for Disease Prevention and Control. Intensive Care Med. 2023 August; 49: 1138-1142. DOI: 10.1007/s00134-023-07127-3Search in Google Scholar
Chakraborty RK, Burns B. Systemic Inflammatory Response Syndrome. StatPearls [Internet]. 2023 May.Search in Google Scholar
Lee HJ, Ko BS, Ryoo SM, Han E, Suh GJ, Choi SH, et al. Modified cardiovascular SOFA score in sepsis: development and internal and external validation. BMC Med. 2022 Dec; 20(1): 476. DOI: 10.1186/s12916-022-02694-6Search in Google Scholar
Bagaswoto HP, Ardelia YP, Setianto BY. First 24-h Sardjito Cardiovascular Intensive Care (SCIENCE) admission risk score to predict mortality in cardiovascular intensive care unit (CICU). Indian Heart J. 2022 Nov-Dec; 74(6): 513-518. DOI: 10.1016/j. ihj.2022.11.002Search in Google Scholar
Raveendran AV, Kumar A, Gangadharan S. Biomarkers and newer laboratory investigations in the diagnosis of sepsis. J R Coll Physicians Edinb. 2019 Sep; 49(3): 207-216. DOI: 10.4997/jrcpe.2019.308Search in Google Scholar
Font MD, Thyagarajan B, Khanna AK. Sepsis and Septic Shock -Basics of diagnosis, pathophysiology and clinical decision making. Med Clin North Am. 2020 Jul; 104(4): 573-585. DOI: 10.1016/j. mcna.2020.02.011Search in Google Scholar
Bauer M, Gerlach H, Vogelmann T, Preissing F, Stiefel J, Adam D. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019- results from a systematic review and meta-analysis. Crit Care. 2020 May; 24(1): 239. DOI: 10.1186/s13054-020-02950-2Search in Google Scholar
Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care. 2019 Jan; 23(1): 16. DOI: 10.1186/s13054-018-2292-6Search in Google Scholar
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, et al. Endothelial Glycocalyx. Compr Physiol. 2022 Aug; 12(4): 3781-3811. DOI: 10.1002/cphy.c210029Search in Google Scholar
Dull RO, Hahn RG. The glycocalyx as a permeability barrier: basic science and clinical evidence. Crit Care. 2022 Sep; 26(1): 273. DOI: 10.1186/s13054-022-04154-2Search in Google Scholar
Farrugia BL, Lord MS, Melrose J, Whitelock JM. The Role of Heparan Sulfate in Inflammation, and the Development of Biomimetics as Anti-Inflammatory Strategies. J Histochem Cytochem. 2018 April; 66(4): 321-336. DOI: 10.1369/0022155417740881Search in Google Scholar
Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost. 2019 Feb; 17(2): 283-294. DOI: 10.1111/jth.14371Search in Google Scholar
Martin JV, Liberati DM, Diebel LN. Excess sodium is deleterious on endothelial and glycocalyx barrier function: A microfluidic study. J Trauma Acute Care Surg. 2018 Jul; 85(1): 128-134. DOI: 10.1097/TA.0000000000001892Search in Google Scholar
Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev. 2020 Jan; 40(1): 158-189. DOI: 10.1002/med.21599Search in Google Scholar
Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina-Tascón GA, et al. THE ENDOTHELIUM IN SEPSIS. Shock. 2016 Mar; 45(3): 259-270. DOI: 10.1097/SHK.0000000000000473Search in Google Scholar
Gabarin RS, Li M, Zimmel PA, Marshall JC, Li Y, Zhang H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J Innate Immun. 2021; 13(6): 323-332. DOI: 10.1159/000515740Search in Google Scholar
Suwarto S, Sasmono RT, Sinto R, Ibrahim E, Suryamin M. Association of Endothelial Glycocalyx and Tight and Adherens Junctions With Severity of Plasma Leakage in Dengue Infection. J Infect Dis. 2017 Mar; 215(6): 992-999. DOI: 10.1093/infdis/jix041Search in Google Scholar
Yang X, Meegan JE, Jannaway M, Coleman DC, Yuan SY. A disintegrin and metalloproteinase 15-mediated glycocalyx shedding contributes to vascular leakage during inflammation. Cardiovasc Res. 2018 Nov; 114(13): 1752-1763. DOI: 10.1093/cvr/cvy167Search in Google Scholar
Weinbaum S, Cancel LM, Fu BM, Tarbell JM. The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc Eng Technol. 2021 Sept; 12: 37-71. DOI: 10.1007/s13239-020-00485-9Search in Google Scholar
Diebel LN, Liberati DM, Martin JV. Acute hyperglycemia increases sepsis related glycocalyx degradation and endothelial cellular injury: A microfluidic study. Am J Surg. 2019 June; 217(6): 1076-1082. DOI: 10.1016/j.amjsurg.2018.12.066Search in Google Scholar
Li Z, Wu N, Wang J, Zhang Q. Roles of Endovascular Calyx Related Enzymes in Endothelial Dysfunction and Diabetic Vascular Complications. Front Pharmacol. 2020 Nov; 11: 590614. DOI: 10.3389/fphar.2020.590614Search in Google Scholar
Haymet AB, Bartnikowski N, Wood ES, Vallely MP, McBride A, Yacoub S, et al. Studying the Endothelial Glycocalyx in vitro: What Is Missing? Front Cardiovasc Med. 2021 Apr; 8: 647086. DOI: 10.3389/fcvm.2021.647086Search in Google Scholar
Okada H, Takemura G, Suzuki K, Oda K, Takada C, Hotta Y, et al. Three-dimensional ultrastructure of capillary endothelial glycocalyx under normal and experimental endotoxemic conditions. Crit Care. 2017 Oct; 21(1): 261. DOI: 10.1186/s13054-017-1841-8Search in Google Scholar
Cerny V, Astapenko D, Burkovskiy I, Hyspler R, Ticha A, Trevors MA, et al. Glycocalyx in vivo measurement. Clin Hemorheol Microcirc. 2017; 67(3-4): 499-503. DOI: 10.3233/CH-179235Search in Google Scholar
Kataoka H, Ushiyama A, Akimoto Y. Structural Behavior of the Endothelial Glycocalyx Is Associated With Pathophysiologic Status in Septic Mice. Anesth Analg. 2017 Sep; 125(3): 874-883. DOI: 10.1213/ANE.0000000000002057Search in Google Scholar
Rovas A, Lukasz AH, Vink H, Urban M, Sackarnd J, Pavenstädt H, et al. Bedside analysis of the sublingual microvascular glycocalyx in the emergency room and intensive care unit - the GlycoNurse study. Scand J Trauma Resusc Emerg Med. 2018 Feb; 26(1): 16. DOI: 10.1186/s13049-018-0483-4Search in Google Scholar
Valerio L, Peters RJ, Zwinderman AH, Pinto-Sietsma SJ. Reproducibility of sublingual microcirculation parameters obtained from sidestream darkfield imaging. PLoS One. 2019 Mar; 14(3): e0213175. DOI: 10.1371/journal.pone.0213175Search in Google Scholar
Nelson A, Johansson J, Tydén J, Bodelsson M. Circulating syndecans during critical illness. APMIS. 2017 May; 125(5): 468-475. DOI: 10.1111/apm.12662Search in Google Scholar
Smart L, Macdonald SPJ, Burrows S, Bosio E, Arendts G, Fatovich DM. Endothelial glycocalyx biomarkers increase in patients with infection during Emergency Department treatment. J Crit Care. 2017 Dec; 42: 304-309. DOI: 10.1016/j.jcrc.2017.07.001Search in Google Scholar
Sun T, Wang Y, Wu X, Cai Y, Zhai T, Zhan Q. Prognostic Value of Syndecan-1 in the Prediction of Sepsis-Related Complications and Mortality: A Meta-Analysis. Front Public Health. 2022 Apr; 10: 870065. DOI: 10.3389/fpubh.2022.870065Search in Google Scholar
Schmidt EP, Overdier KH, Sun X, Lin L, Liu X, Yang Y, et al. Urinary Glycosaminoglycans Predict Outcomes in Septic Shock and Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2016 Aug; 194(4): 439-449. DOI: 10.1164/rccm.201511-2281OCSearch in Google Scholar
Cowman MK, Lee HG, Schwertfeger KL, McCarthy JB, Turley EA. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front Immunol. 2015 June; 6: 261. DOI: 10.3389/fimmu.2015.00261Search in Google Scholar
Ikeda M, Matsumoto H, Ogura H, Hirose T, Shimizu K, Yamamoto K, et al. Circulating syndecan-1 predicts the development of disseminated intravascular coagulation in patients with sepsis. J Crit Care. 2018 Feb; 43: 48-53. DOI: 10.1016/j.jcrc.2017.07.049Search in Google Scholar
Lukasz A, Hillgruber C, Oberleithner H, Kusche-Vihrog K, Pavenstädt H, Rovas A, et al. Endothelial glycocalyx breakdown is mediated by angiopoietin-2. Cardiovasc Res. 2017 May; 113(6): 671-680. DOI: 10.1093/cvr/cvx023Search in Google Scholar
Wu Q, Xu WD, Huang AF. Role of angiopoietin-2 in inflammatory autoimmune diseases: A comprehensive review. Int Immunopharmacol. 2020 Mar; 80: 106223. DOI: 10.1016/j. intimp.2020.106223Search in Google Scholar
Rathnakumar K, Savant S, Giri H, Ghosh A, Fisslthaler B, Fleming I, et al. Angiopoietin-2 mediates thrombin-induced monocyte adhesion and endothelial permeability. J Thromb Haemost. 2016 August;(14): 1655-1667. DOI: 10.1111/jth.13376Search in Google Scholar
Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015 Sep; 80(3): 389-402. DOI: 10.1111/bcp.12629Search in Google Scholar
Joffre J, Hellman J. Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxid Redox Signal. 2021 Nov; 35(15): 1291-1307. DOI: 10.1089/ars.2021.0027Search in Google Scholar
Delgadillo LF, Marsh GA, Waugh RE. Endothelial Glycocalyx Layer Properties and Its Ability to Limit Leukocyte Adhesion. Biophys J. 2020 Apr; 118(7): 1564-1575. DOI: 10.1016/j.bpj.2020.02.010Search in Google Scholar
Mast AE. Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein. Arterioscler Thromb Vasc Biol. 2016 Jan; 36(1): 9-14. DOI: 10.1161/ATVBAHA.115.305996Search in Google Scholar
Arnold K, Liao YE, Liu J. Potential Use of Anti-Inflammatory Synthetic Heparan Sulfate to Attenuate Liver Damage. Biomedicines. 2020 Nov; 8(11): 503. DOI: 10.3390/biomedicines8110503Search in Google Scholar
Sungurlu S, Kuppy J, Balk RA. Role of Antithrombin III and Tissue Factor Pathway in the Pathogenesis of Sepsis. Crit Care Clin. 2020 Apr; 36(2): 255-265. DOI: 10.1016/j.ccc.2019.12.002Search in Google Scholar
Ostrowski SR, Haase N, Müller RB, Møller MH, Pott FC, Perner A, et al. Association between biomarkers of endothelial injury and hypocoagulability in patients with severe sepsis: a prospective study. Crit Care. 2015 Apr; 19(1): 191. DOI: 10.1186/s13054-015-0918-5Search in Google Scholar
Dimitrievska S, Gui L, Weyers A, Lin T, Cai C, Wu W, et al. New Functional Tools for Antithrombogenic Activity Assessment of Live Surface Glycocalyx. Arterioscler Thromb Vasc Biol. 2016 Sep; 36(9): 1847-1853. DOI: 10.1161/ATVBAHA.116.308023Search in Google Scholar
Graetz TJ, Hotchkiss RS. Sepsis: Preventing organ failure in sepsis -the search continues. Nat Rev Nephrol. 2017 Jan; 13(1): 5-6. DOI: 10.1038/nrneph.2016.171Search in Google Scholar
Iba T, Levy JH. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost. 2018 Feb; 16(2): 231-241. DOI: 10.1111/jth.13911Search in Google Scholar
Proudfoot AEI, Johnson Z, Bonvin P, Handel TM. Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Pharmaceuticals (Basel). 2017 Aug; 10(3): 70. DOI: 10.3390/ph10030070Search in Google Scholar
Yang Y, Haeger SM, Suflita MA, Zhang F, Dailey KL, Colbert JF, et al. Fibroblast Growth Factor Signaling Mediates Pulmonary Endothelial Glycocalyx Reconstitution. Am J Respir Cell Mol Biol. 2017 Jun; 56(6): 727-737. DOI: 10.1165/rcmb.2016-0338OCSearch in Google Scholar
Rizzo AN, Dudek SM. Endothelial Glycocalyx Repair: Building a Wall to Protect the Lung during Sepsis. Am J Respir Cell Mol Biol. 2017 Jun; 56(6): 687-688. DOI: 10.1165/rcmb.2017-0065EDSearch in Google Scholar
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017 Mar; 45(3): 486-552.Search in Google Scholar
Raghunathan K, Nailer P, Konoske R. What is the ideal crystalloid? Curr Opin Crit Care. 2015 Aug; 21(4): 309-314. DOI: 10.1097/MCC.0000000000000218Search in Google Scholar
Zazzeron L, Gattinoni L, Caironi P. Role of albumin, starches and gelatins versus crystalloids in volume resuscitation of critically ill patients. Curr Opin Crit Care. 2016 Oct; 22(5): 428-436. DOI: 10.1097/MCC.0000000000000341Search in Google Scholar
Chappell D, Bruegger D, Potzel J, Jacob M, Brettner F, Vogeser M, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014 Oct; 18(5): 538. DOI: 10.1186/s13054-014-0538-5Search in Google Scholar
Wang G, Zhang H, Liu D, Wang X; Chinese Critical Ultrasound Study Group. Resuscitation fluids as drugs: targeting the endothelial glycocalyx. Chin Med J (Engl). 2020 Jan; 135(2): 137-144. DOI: 10.1097/CM9.0000000000001869Search in Google Scholar
Uzawa K, Ushiyama A, Mitsuda S, Ando T, Sawa M, Miyao H, et al. The protective effect of hydroxyethyl starch solution on the glycocalyx layer in an acute hemorrhage mouse model. J Anesth. 2020 Feb; 34: 36-46. DOI: 10.1007/s00540-019-02692-8Search in Google Scholar
Margraf A, Herter JM, Kühne K, Stadtmann A, Ermert T, Wenk M, et al. 6% Hydroxyethyl starch (HES 130/0.4) diminishes glycocalyx degradation and decreases vascular permeability during systemic and pulmonary inflammation in mice. Crit Care. 2018 May; 22(1): 111. DOI: 10.1186/s13054-017-1846-3Search in Google Scholar
Corrêa TD, Rocha LL, Pessoa CM, Silva E, de Assuncao MS. Fluid therapy for septic shock resuscitation: which fluid should be used? Einstein (Sao Paulo). 2015 Jul-Sep; 13(3): 462-468. DOI: 10.1590/S1679-45082015RW3273Search in Google Scholar
Aldecoa C, Llau JV, Nuvials X, Artigas A. Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: a review. Ann Intensive Care. 2020 Jun; 10(1): 85. DOI: 10.1186/s13613-020-00697-1Search in Google Scholar
Zeng Y, Liu XH, Tarbell J, Fu B. Sphingosine 1-phosphate induced synthesis of glycocalyx on endothelial cells. Exp Cell Res. 2015 Nov; 339(1): 90-95. DOI: 10.1016/j.yexcr.2015.08.013Search in Google Scholar
Chang R, Holcomb JB. Choice of Fluid Therapy in the Initial Management of Sepsis, Severe Sepsis, and Septic Shock. Shock. 2016 Jul; 46(1): 17-26. DOI: 10.1097/SHK.0000000000000577Search in Google Scholar
Iba T, Maier CL, Helms J, Ferrer R, Thachil J, Levy JH. Managing sepsis and septic shock in an endothelial glycocalyx-friendly way: from the viewpoint of surviving sepsis campaign guidelines. Ann Intensive Care. 2024 Apr; 14(1): 64. DOI: 10.1186/s13613-024-01301-6Search in Google Scholar
Cui N, Wang H, Long Y, Su L, Liu D. Dexamethasone Suppressed LPS-Induced Matrix Metalloproteinase and Its Effect on Endothelial Glycocalyx Shedding. Mediators Inflamm. 2015; 2015: 912726. DOI: 10.1155/2015/912726Search in Google Scholar
Zhang X, Li X. The Role of Histones and Heparin in Sepsis: A Review. J Intensive Care Med. 2022 Mar; 37(3): 319-326. DOI: 10.1177/0885066621992320Search in Google Scholar
Vagionas D, Papadakis DD, Politou M, Koutsoukou A, Vasileiadis I. Thromboinflammation in Sepsis and Heparin: A Review of Literature and Pathophysiology. In Vivo. 2022 Nov-Dec; 36(6): 2542-2557. DOI: 10.21873/invivo.12991Search in Google Scholar
Song JW, Zullo JA, Liveris D, Dragovich M, Zhang XF, Goligorsky MS. Therapeutic Restoration of Endothelial Glycocalyx in Sepsis. J Pharmacol Exp Ther. 2017 Apr; 361(1): 115-121. DOI: 10.1124/jpet.116.239509Search in Google Scholar
van Haare J, Kooi ME, van Teeffelen JW, Vink H, Slenter J, Cobelens H, et al. Metformin and sulodexide restore cardiac microvascular perfusion capacity in diet-induced obese rats. Cardiovasc Diabetol. 2021 Feb; 20(1): 53. DOI: 10.1186/s12933-021-01240-7Search in Google Scholar
Ying J, Zhang C, Wang Y, Liu T, Yu Z, Wang K, et al. Sulodexide improves vascular permeability via glycocalyx remodelling in endothelial cells during sepsis. Front Immunol. 2023 Aug; 14: 1172892. DOI: 10.3389/fimmu.2023.1172892Search in Google Scholar
Wang Q, Zhou X, Yang L, Luo M, Han L, Lu Y, et al. Gentiopicroside (GENT) protects against sepsis induced by lipopolysaccharide (LPS) through the NF-κB signaling pathway. Ann Transl Med. 2019 Dec; 7(23): 731. DOI: 10.21037/atm.2019.11.126Search in Google Scholar
Ni J, Zhao Y, Su J, Liu Z, Fang S, Li L, et al. Toddalolactone Protects Lipopolysaccharide by Modulating HMGB1-NF-κB Translocation. Front Pharmacol. 2020 Feb; 11: 109. DOI: 10.3389/fphar.2020.00109Search in Google Scholar