Otwarty dostęp

Diagnostic values of glial fibrillary acidic protein, neuron-specific enolase and protein S100β for sepsis-associated encephalopathy


Zacytuj

1. Chiu C, Legrand M. Epidemiology of sepsis and septic shock. Curr Opin Anaesthesiol. 2021;34(2):71-6. DOI: 10.1097/ACO.0000000000000958Search in Google Scholar

2. Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, Vincent JL. Biomarkers of sepsis: time for a reappraisal. Crit Care. 2020;24(1):287. DOI: 10.1186/s13054-020-02993-5Search in Google Scholar

3. Tauber SC, Djukic M, Gossner J, Eiffert H, Brück W, Nau R. Sepsis-associated encephalopathy and septic encephalitis: an update. Expert Rev Anti Infect Ther. 2021;19(2):215-31. DOI: 10.1080/14787210.2020.1812384Search in Google Scholar

4. Gao Q, Hernandes MS. Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction. Inflammation. 2021;44(6):2143-50. DOI: 10.1007/s10753-021-01501-3Search in Google Scholar

5. Chung HY, Wickel J, Brunkhorst FM, Geis C. Sepsis-Associated Encephalopathy: From Delirium to Dementia? J Clin Med. 2020;9(3):703. DOI: 10.3390/jcm9030703Search in Google Scholar

6. Ren C, Yao RQ, Zhang H, Feng YW, Yao YM. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. J Neuroinflammation. 2020;17(1):14. DOI: 10.1186/s12974-020-1701-3Search in Google Scholar

7. Ren C, Yao RQ, Zhang H, Feng YW, Yao YM. Pathogenesis of sepsis-associated encephalopathy: more than blood-brain barrier dysfunction. Mol Biol Rep. 2022;49(10):10091-9. DOI: 10.1007/s11033-022-07592-xSearch in Google Scholar

8. Society of Critical Care Medicine, Chinese Medical Association. Guidelines for the treatment of severe sepsis/septic shock in China (2014). Chin Crit Care Med. 2015;27:401-26. DOI: 10.3760/cma.j.issn.2095-4352.2015.06.001Search in Google Scholar

9. Zhao L, Gao Y, Guo S, et al. Sepsis-Associated Encephalopathy: Insight into Injury and Pathogenesis. CNS Neurol Disord Drug Targets. 2021;20(2):112-24. DOI: 10.2174/18715273MTExrNTka3Search in Google Scholar

10. Mazeraud A, Bozza FA, Sharshar T. Sepsis-associated Encephalopathy Is Septic. Am J Respir Crit Care Med. 2018;197(2):698-9. DOI: 10.1164/rccm.201712-2593EDSearch in Google Scholar

11. Wei XB, Jiang WQ, Zeng JH, Huang LQ, Ding HG, Jing YW, et al. Exosome-Derived lncRNA NEAT1 Exacerbates Sepsis-Associated Encephalopathy by Promoting Ferroptosis Through Regulating miR-9-5p/TFRC and GOT1 Axis. Mol Neurobiol. 2022;59(3):1954-69. DOI: 10.1007/s12035-022-02738-1Search in Google Scholar

12. Kikuchi DS, Campos ACP, Qu H, Forrester SJ, Pagano RL, Lassègue B, et al. Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associated encephalopathy. J Neuroinflammation. 2019;16(1):241. DOI: 10.1186/s12974-019-1575-4Search in Google Scholar

13. Wu L, Ai ML, Feng Q, Deng S, Liu ZY, Zhang LN, et al. Serum glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication. J Crit Care. 2019,52:172-9. DOI: 10.1016/j.jcrc.2019.04.018Search in Google Scholar

14. Liu X, Wen M, Han Y, Ding H, Chen S, Li Y, et al. Mechanism of resveratrol on ameliorating the cognitive dysfunction induced by sepsis associated encephalopathy in rats. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020;32(10):1189-93. DOI: 10.3760/cma.j.cn121430-20200720-00531Search in Google Scholar

15. Yan S, Gao M, Chen H, Jin X, Yang M. Expression level of glial fibrillary acidic protein and its clinical significance in patients with sepsis-associated encephalopathy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019;44(10):1137-42. DOI: 10.11817/j.issn.1672-7347.2019.190180Search in Google Scholar

16. Li XL, Xie JF, Ye XY, Li Y, Li YG, Feng K, et al. Value of cerebral hypoxic-ischemic injury markers in the early diagnosis of sepsis associated encephalopathy in burn patients with sepsis. Zhonghua Shao Shang Za Zhi. 2022;38(1):21-8. DOI: 10.3760/cma.j.cn501120-20211006-00346Search in Google Scholar

17. Zheng SM, Zhao FL, Luo YY, Lin XF, Wen MY. Clinical effect of electroacupuncture at Baihui and Shuigou points in treatment of brain injury in patients with sepsis-associated encephalopathy. Zhen Ci Yan Jiu. 2020;45(5):402-6. DOI: 10.13702/j.1000-0607.190781Search in Google Scholar

18. Meng JF, Li YP, Tan DM, Chen MJ, Chen J. [Diagnosis value of combined detection of serum TNF-α, NSE and MCP-1 in early sepsis-related encephalopathy]. Hebei Medicine. 2020;26(10):1596-600.Search in Google Scholar

19. Guo W, Li Y, Li Q. Relationship between miR-29a levels in the peripheral blood and sepsis-related encephalopathy. Am J Transl Res. 2021;13(7):7715-22.Search in Google Scholar

20. Ehler J, Saller T, Wittstock M, Rommer PS, Chappell D, Zwissler B, et al. Diagnostic value of NT-proCNP compared to NSE and S100B in cerebrospinal fluid and plasma of patients with sepsis-associated encephalopathy. Neurosci Lett. 2019;692:167-73.. DOI: 10.1016/j.neulet.2018.11.014Search in Google Scholar

21. Wu L, Feng Q, Ai ML, Deng SY, Liu ZY, Huang L, et al. The dynamic change of serum S100B levels from day 1 to day 3 is more associated with sepsis-associated encephalopathy. Sci Rep. 2020;10(1):7718. DOI: 10.1038/s41598-020-64200-3Search in Google Scholar

eISSN:
2284-5623
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology