Otwarty dostęp

The Role of procollagen type 1 amino-terminal propertied (P1NP) Cytochrome P450 (CYPs) and Osteoprotegerin (OPG) as Potential Bone function markers in Prostate Cancer Bone Metastasis


Zacytuj

1. Calvin K, Patel P, Clarke L, Asrar G, Bond-Lamberty B, Cui RY, et al. GCAM v5. 1: representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development. 2019;12(2):677-98. DOI: 10.5194/gmd-12-677-2019 Open DOISearch in Google Scholar

2. Campa III JA, Payne R, editors. The management of intractable bone pain: a clinician’s perspective. Seminars in nuclear medicine; 1992: Elsevier. DOI: 10.1016/S0001-2998(05)80151-5 Open DOISearch in Google Scholar

3. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1999. CA: A cancer Journal for Clinicians. 1999;49(1):8-31. DOI: 10.3322/canjclin.49.1.810200775 Open DOISearch in Google Scholar

4. Roodman GD. Advances in bone biology: the osteoclast. Endocrine reviews. 1996;17(4):308-32. DOI: 10.1210/er.17.4.308 Open DOISearch in Google Scholar

5. Yasuda H. Discovery of the RANKL/RANK/OPG system. Journal of Bone and Mineral Metabolism. 2021;39(1):2-11. DOI: 10.1007/s00774-020-01175-133389131 Open DOISearch in Google Scholar

6. Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. Journal of bone and mineral metabolism. 2021;39(1):19-26. DOI: 10.1007/s00774-020-01162-633079279 Open DOISearch in Google Scholar

7. Lacey D, Timms E, Tan H-L, Kelley M, Dunstan C, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165-76. DOI: 10.1016/S0092-8674(00)81569-X9568710 Open DOISearch in Google Scholar

8. Atkins GJ, Haynes DR, Graves SE, Evdokiou A, Hay S, Bouralexis S, et al. Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. Journal of Bone and Mineral Research. 2000;15(4):640-9. DOI: 10.1359/jbmr.2000.15.4.64010780856 Open DOISearch in Google Scholar

9. Chirgwin JM, Guise TA. Molecular mechanisms of tumor-bone interactions in osteolytic metastases. Critical Reviews™ in Eukaryotic Gene Expression. 2000;10(2). DOI: 10.1615/CritRevEukarGeneExpr.v10.i2.50 Open DOISearch in Google Scholar

10. de la Piedra C, Castro-Errecaborde N-A, Traba ML, Méndez-Dávila C, Garcıá-Moreno C, de Acuña LR, et al. Bone remodeling markers in the detection of bone metastases in prostate cancer. Clinica chimica acta. 2003;331(1-2):45-53. DOI: 10.1016/S0009-8981(03)00081-0 Open DOISearch in Google Scholar

11. Jung K, Lein M, Stephan C, Von Hösslin K, Semjonow A, Sinha P, et al. Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. International journal of cancer. 2004;111(5):783-91. DOI: 10.1002/ijc.2031415252851 Open DOISearch in Google Scholar

12. Brasso K, Christensen IJ, Johansen JS, Teisner B, Garnero P, Price PA, et al. Prognostic value of PINP, bone alkaline phosphatase, CTX-I, and YKL-40 in patients with metastatic prostate carcinoma. The Prostate. 2006;66(5):503-13. DOI: 10.1002/pros.2031116372331 Open DOISearch in Google Scholar

13. Smith M, Coleman R, Klotz L, Pittman K, Milecki P, Ng S, et al. Denosumab for the prevention of skeletal complications in metastatic castration-resistant prostate cancer: comparison of skeletal-related events and symptomatic skeletal events. Annals of Oncology. 2015;26(2):368-74. DOI: 10.1093/annonc/mdu519430437825425475 Open DOISearch in Google Scholar

14. Glass TR, Tangen CM, Crawford ED, Thompson I. Metastatic carcinoma of the prostate: identifying prognostic groups using recursive partitioning. The Journal of urology. 2003;169(1):164-9. DOI: 10.1016/S0022-5347(05)64059-1 Open DOISearch in Google Scholar

15. Koopmans N, De Jong I, Breeuwsma A, Van der Veer E. Serum bone turnover markers (PINP and ICTP) for the early detection of bone metastases in patients with prostate cancer: a longitudinal approach. The Journal of urology. 2007;178(3):849-53. DOI: 10.1016/j.juro.2007.05.02917631330 Open DOISearch in Google Scholar

16. Polak-Jonkisz D, Zwolińska D, Bednorz R, Owczarek H, Szymańska A, Nahaczewska W. Procollagen I carboxyterminal propeptide (PICP) as a bone formation marker and carboxyterminal telopeptide of type I collagen (ICTP) as a bone degradation marker in children with chronic renal failure under conservative therapy. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2003;9(1):CR19-23. Search in Google Scholar

17. Thurairaja R, Iles RK, Jefferson K, McFarlane J, Persad R. Serum amino-terminal propeptide of type 1 procollagen (P1NP) in prostate cancer: a potential predictor of bone metastases and prognosticator for disease progression and survival. Urologia internationalis. 2006;76(1):67-71. DOI: 10.1159/00008973816401924 Open DOISearch in Google Scholar

18. De La Piedra C, Alcaraz A, Bellmunt J, Meseguer C, Gómez-Caamano A, Ribal MJ, et al. Usefulness of bone turnover markers as predictors of mortality risk, disease progression and skeletal-related events appearance in patients with prostate cancer with bone metastases following treatment with zoledronic acid: TUGAMO study. British journal of cancer. 2013;108(12):2565-72. DOI: 10.1038/bjc.2013.270369424923722472 Open DOISearch in Google Scholar

19. Aufderklamm S, Hennenlotter J, Rausch S, Bock C, Erne E, Schwentner C, et al. Oncological validation of bone turnover markers c-terminal telopeptide of type I collagen (1CTP) and peptides n-terminal propeptide of type I procollagen (P1NP) in patients with prostate cancer and bone metastases. Translational Andrology and Urology. 2021;10(10):4000. DOI: 10.21037/tau-20-1120857555934804842 Open DOISearch in Google Scholar

20. Chen P, Wang S, Cao C, Ye W, Wang M, Zhou C, et al. α-naphthoflavone-derived cytochrome P450 (CYP) 1B1 degraders specific for sensitizing CYP1B1-mediated drug resistance to prostate cancer DU145: Structure activity relationship. Bioorganic Chemistry. 2021;116:105295. DOI: 10.1016/j.bioorg.2021.10529534455300 Open DOISearch in Google Scholar

21. Wang Y, He X, Li C, Ma Y, Xue W, Hu B, et al. Carvedilol serves as a novel CYP1B1 inhibitor, a systematic drug repurposing approach through structure-based virtual screening and experimental verification. European Journal of Medicinal Chemistry. 2020;193:112235. DOI: 10.1016/j.ejmech.2020.11223532203789 Open DOISearch in Google Scholar

22. Kaushik R, Khan S, Sharma M, Hemalatha S, Mueed Z, Poddar NK. Role of Cytochrome P450 in Prostate Cancer and its Therapy. Current Enzyme Inhibition. 2020;16(1):63-73. DOI: 10.2174/1573408016666200218122044 Open DOISearch in Google Scholar

23. Wong SK, Mohamad N-V, Giaze TR, Chin K-Y, Mohamed N, Ima-Nirwana S. Prostate cancer and bone metastases: the underlying mechanisms. International journal of molecular sciences. 2019;20(10):2587. DOI: 10.3390/ijms20102587 Open DOISearch in Google Scholar

24. Kanis JA, McCloskey EV. Bone turnover and biochemical markers in malignancy. Cancer: Interdisciplinary International Journal of the American Cancer Society. 1997;80(S8):1538-45. DOI: 10.1002/(SICI)1097-0142(19971015)80:8+<1538::AID-CNCR3>3.0.CO;2-G Open DOISearch in Google Scholar

25. Koizumi M, Yonese J, Fukui I, Ogata E. The serum level of the amino-terminal propeptide of type I procollagen is a sensitive marker for prostate cancer metastasis to bone. BJU international. 2001;87(4):348-51. DOI: 10.1046/j.1464-410x.2001.00105.x Open DOISearch in Google Scholar

26. Holen I, Croucher PI, Hamdy FC, Eaton CL. Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer research. 2002;62(6):1619-23. Search in Google Scholar

27. Wang Y, Liu Y, Huang Z, Chen X, Zhang B. The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Discovery. 2022;8(1):1-9. DOI: 10.1038/s41420-022-01042-0 Open DOISearch in Google Scholar

28. Anselmino N, Starbuck M, Labanca E, Cotignola J, Navone N, Gueron G, et al. Heme oxygenase-1 is a pivotal modulator of bone turnover and remodeling: molecular implications for prostate cancer bone metastasis. Antioxidants & redox signaling. 2020;32(17):1243-58. DOI: 10.1089/ars.2019.7879 Open DOISearch in Google Scholar

29. Brown JM, Vessella RL, Kostenuik PJ, Dunstan CR, Lange PH, Corey E. Serum osteoprotegerin levels are increased in patients with advanced prostate cancer. Clinical cancer research. 2001;7(10):2977-83. Search in Google Scholar

30. Jung K, Lein M, von Hosslin K, Brux B, Schnorr D, Loening SA, et al. Osteoprotegerin in serum as a novel marker of bone metastatic spread in prostate cancer. Clinical chemistry. 2001;47(11):2061-3. DOI: 10.1093/clinchem/47.11.2061 Open DOISearch in Google Scholar

31. Thirunavukkarasu K, Miles RR, Halladay DL, Yang X, Galvin RJ, Chandrasekhar S, et al. Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-β (TGF-β): Mapping of the OPG promoter region that mediates TGF-β effects. Journal of Biological Chemistry. 2001;276(39):36241-50. DOI: 10.1074/jbc.M104319200 Open DOISearch in Google Scholar

32. Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology. 2000;141(9):3478-84. DOI: 10.1210/endo.141.9.7634 Open DOISearch in Google Scholar

33. Li J, Sarosi I, Yan X-Q, Morony S, Capparelli C, Tan H-L, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proceedings of the national academy of sciences. 2000;97(4):1566-71. DOI: 10.1073/pnas.97.4.1566 Open DOISearch in Google Scholar

34. Adekoya TO, Richardson RM. Cytokines and chemokines as mediators of prostate cancer metastasis. International Journal of Molecular Sciences. 2020;21(12):4449. DOI: 10.3390/ijms21124449735220332585812 Open DOISearch in Google Scholar

35. Ulsperger E, Hamilton G, Raderer M, Baumgartner G, Hejna M, Hoffmann O, et al. Resveratrol pretreatment desensitizes AHTO-7 human osteoblasts to growth stimulation in response to carcinoma cell supernatants. International journal of oncology. 1999;15(5):955-64. DOI: 10.3892/ijo.15.5.95510536179 Open DOISearch in Google Scholar

36. Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006;25(11):1679-91. DOI: 10.1038/sj.onc.120937716550168 Open DOISearch in Google Scholar

37. Li Y, Chen S, Zhu J, Zheng C, Wu M, Xue L, et al. Lovastatin enhances chemosensitivity of paclitaxel-resistant prostate cancer cells through inhibition of CYP2C8. Biochemical and Biophysical Research Communications. 2022;589:85-91. DOI: 10.1016/j.bbrc.2021.12.00734896780 Open DOISearch in Google Scholar

38. Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Current drug targets. 2018;19(1):38-54. DOI: 10.2174/138945011866617012514455728124606 Open DOISearch in Google Scholar

39. Yan T, Lu L, Xie C, Chen J, Peng X, Zhu L, et al. Severely Impaired and Dysregulated Cytochrome P450 Expression and Activities in Hepatocellular Carcinoma: Implications for Personalized Treatment in PatientsSeverely Impaired and Dysregulated Activities of CYPs in HCC. Molecular cancer therapeutics. 2015;14(12):2874-86. DOI: 10.1158/1535-7163.MCT-15-0274467438026516155 Open DOISearch in Google Scholar

40. Ye L, Yang X, Guo E, Chen W, Lu L, Wang Y, et al. Sorafenib metabolism is significantly altered in the liver tumor tissue of hepatocellular carcinoma patient. PloS one. 2014;9(5):e96664. DOI: 10.1371/journal.pone.0096664401053224797816 Open DOISearch in Google Scholar

41. Horas K, Seibel MJ. Bone remodeling markers and bone cancer. Bone Sarcomas and Bone Metastases-From Bench to Bedside: Elsevier; 2022. p. 413-29. DOI: 10.1016/B978-0-12-821666-8.00037-2 Open DOISearch in Google Scholar

42. Merlo P, Rochlitz C, Osthoff M. The Alkaline Phosphatase Flare Phenomenon: A Transient Substantial Increase in Alkaline Phosphatase Concentration in a Prostate Cancer Patient after Starting GnRH Agonist Treatment. Case Reports in Oncology. 2021;14(1):73-7. DOI: 10.1159/000513427798361933776685 Open DOISearch in Google Scholar

43. Alexandrakis MG, Passam FH, Malliaraki N, Katachanakis C, Kyriakou DS, Margioris AN. Evaluation of bone disease in multiple myeloma: a correlation between biochemical markers of bone metabolism and other clinical parameters in untreated multiple myeloma patients. Clinica Chimica Acta. 2002;325(1-2):51-7. DOI: 10.1016/S0009-8981(02)00246-212367766 Open DOISearch in Google Scholar

44. Velletri T, Huang Y, Wang Y, Li Q, Hu M, Xie N, et al. Loss of p53 in mesenchymal stem cells promotes alteration of bone remodeling through negative regulation of osteoprotegerin. Cell Death & Differentiation. 2021;28(1):156-69. DOI: 10.1038/s41418-020-0590-4785312632694652 Open DOISearch in Google Scholar

45. Akoto T, Saini S. Role of exosomes in prostate cancer metastasis. International journal of molecular sciences. 2021;22(7):3528. DOI: 10.3390/ijms22073528803638133805398 Open DOISearch in Google Scholar

46. Hofbauer LC, Neubauer A, Heufelder AE. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: Potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2001;92(3):460-70. DOI: 10.1002/1097-0142(20010801)92:3<460::AIDCNCR1344>3.0.CO;2-D Open DOISearch in Google Scholar

47. Zhang J, Dai J, Qi Y, Lin D-L, Smith P, Strayhorn C, et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. The Journal of clinical investigation. 2001;107(10):1235-44. DOI: 10.1172/JCI11685 Open DOISearch in Google Scholar

48. Eaton CL, Wells JM, Holen I, Croucher PI, Hamdy FC. Serum osteoprotegerin (OPG) levels are associated with disease progression and response to androgen ablation in patients with prostate cancer. The Prostate. 2004;59(3):304-10. DOI: 10.1002/pros.20016 Open DOISearch in Google Scholar

49. Hagaman DE, Damasco JA, Perez JVD, Rojo RD, Melancon MP. Recent advances in nanomedicine for the diagnosis and treatment of prostate cancer bone metastasis. Molecules. 2021;26(2):384. DOI: 10.3390/molecules26020384 Open DOISearch in Google Scholar

50. Phillips J, Eaton C, Proctor L, Sokhi D, Hannon R, Cross N, et al. 506 CAN SERUM OSTEOPROTEGERIN LEVELS PREDICT BIOCHEMICAL FAILURE IN PROSTATE CANCER? European Urology Supplements. 2007;2(6):149. DOI: 10.1016/S1569-9056(07)60504-1 Open DOISearch in Google Scholar

51. Kamiya N, Suzuki H, Endo T, Takano M, Yano M, Naoi M, et al. Significance of serum osteoprotegerin and receptor activator of nuclear factor κB ligand in Japanese prostate cancer patients with bone metastasis. International journal of clinical oncology. 2011;16(4):366-72. DOI: 10.1007/s10147-011-0193-7 Open DOISearch in Google Scholar

52. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670-91. DOI: 10.1016/j.cell.2016.11.037 Open DOISearch in Google Scholar

53. Sharma M, McCarthy ET, Reddy DS, Patel PK, Savin VJ, Medhora M, et al. 8, 9-Epoxyeicosatrienoic acid protects the glomerular filtration barrier. Prostaglandins & other lipid mediators. 2009;89(1-2):43-51. DOI: 10.1016/j.prostaglandins.2009.04.004 Open DOISearch in Google Scholar

54. Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, et al. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer and Metastasis Reviews. 2018;37(2):409-23. DOI: 10.1007/s10555-018-9749-630066055 Open DOISearch in Google Scholar

55. Guo Z, Norris B, Henriksen J, Morgan M, Maher M, Schumacher R, et al. CYP3A4 promotes mammary carcinoma angiogenesis in a cell iIntrinsic fashion. Cancer Research. 2013;73(8_Supplement):82-. DOI: 10.1158/1538-7445.AM2013-82 Open DOISearch in Google Scholar

56. Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J, et al. CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14, 15-epoxyeicosatrienoic acid (EET). Journal of Biological Chemistry. 2011;286(20):17543-59. DOI: 10.1074/jbc.M110.198515309382921402692 Open DOISearch in Google Scholar

57. Baker SG. The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer. Journal of the National Cancer Institute. 2003;95(7):511-5. DOI: 10.1093/jnci/95.7.51112671018 Open DOISearch in Google Scholar

58. Henderson CM, Fantuzzo JW. Challenging the Core Assumption of Chronic Absenteeism: Are Excused and Unexcused Absences Equally Useful in Determining Academic Risk Status? Journal of Education for Students Placed at Risk (JESPAR). 2022:1-35. DOI: 10.1080/10824669.2022.2065636 Open DOISearch in Google Scholar

eISSN:
2284-5623
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology