Otwarty dostęp

Endothelial progenitor cell (EPCs)-derived exosomal miR-30d-5p inhibits the inflammatory response of high glucose-impaired fibroblasts by affecting the M1/M2 polarization of macrophages


Zacytuj

1. IDF Diabetes Atlas Group. Update of mortality attributable to diabetes for the IDF Diabetes Atlas: estimates for the year 2011. Diabetes Res Clin Pract. 2013;100(2):277-9. DOI: 10.1016/j.diabres.2013.02.00510.1016/j.diabres.2013.02.00523506763 Search in Google Scholar

2. Aschner P, Aguilar-Salinas C, Aguirre L, Franco L, Gagliardino JJ, de Lapertosa SG, et al. Diabetes in South and Central America: an update. Diabetes Res Clin Pract. 2014;103(2):238-43. DOI: 10.1016/j.diabres.2013.11.01010.1016/j.diabres.2013.11.01024439209 Search in Google Scholar

3. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA. 2005;293(2):217-28. DOI: 10.1001/jama.293.2.21710.1001/jama.293.2.21715644549 Search in Google Scholar

4. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999;340(2):115-26. DOI: 10.1056/NEJM19990114340020710.1056/NEJM1999011434002079887164 Search in Google Scholar

5. Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003;285(3):E527-E33. DOI: 10.1152/ajpendo.00110.200310.1152/ajpendo.00110.200312736161 Search in Google Scholar

6. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. The Journal of clinical investigation. 2006;116(7):1793-801. DOI: 10.1172/JCI2906910.1172/JCI29069148317316823477 Search in Google Scholar

7. Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435-44. DOI: 10.1007/s11892-013-0375-y10.1007/s11892-013-0375-y23494755 Search in Google Scholar

8. Ehses JA, Böni-Schnetzler M, Faulenbach M, Donath MY. Macrophages, cytokines and beta-cell death in Type 2 diabetes. Biochem Soc Trans. 2008;36(Pt 3):340-2. DOI: 10.1042/BST036034010.1042/BST036034018481953 Search in Google Scholar

9. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. The Journal of clinical investigation. 2012;122(3):787-95. DOI: 10.1172/JCI5964310.1172/JCI59643328722322378047 Search in Google Scholar

10. Biswas SK, Mantovani A. Orchestration of metabolism by macrophages. Cell Metab. 2012;15(4):432-7. DOI: 10.1016/j.cmet.2011.11.01310.1016/j.cmet.2011.11.01322482726 Search in Google Scholar

11. Cassetta L, Cassol E, Poli G. Macrophage polarization in health and disease. ScientificWorldJournal. 2011;11:2391-402. DOI: 10.1100/2011/21396210.1100/2011/213962323667422194670 Search in Google Scholar

12. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176-85. DOI: 10.1002/path.413310.1002/path.413323096265 Search in Google Scholar

13. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677-86. DOI: 10.1016/j. it.2004.09.015 Search in Google Scholar

14. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723-37. DOI: 10.1038/nri307310.1038/nri3073342254921997792 Search in Google Scholar

15. Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72(21):4111-26. DOI: 10.1007/s00018-015-1995-y10.1007/s00018-015-1995-y26210152 Search in Google Scholar

16. Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 2009;183(10):6469-77. DOI: 10.4049/jimmunol.090157510.4049/jimmunol.090157519841166 Search in Google Scholar

17. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MPJ, Donners MMPC. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17(1):109-18. DOI: 10.1007/s10456-013-9381-610.1007/s10456-013-9381-624013945 Search in Google Scholar

18. Li X, Tian Y, Tu M-J, Ho PY, Batra N, Yu A-M. Bio-engineered miR-27b-3p and miR-328-3p modulate drug metabolism and disposition the regulation of target ADME gene expression. Acta Pharm Sin B. 2019;9(3):639-47. DOI: 10.1016/j.apsb.2018.12.00210.1016/j.apsb.2018.12.002654307531193825 Search in Google Scholar

19. Chen Y, Zhao X, Sun J, Su W, Zhang L, Li Y, et al. YAP1/Twist promotes fibroblast activation and lung fibrosis that conferred by miR-15a loss in IPF. Cell Death Differ. 2019;26(9):1832-44. DOI: 10.1038/s41418-018-0250-010.1038/s41418-018-0250-0674810730644438 Search in Google Scholar

20. Fu Q, Jiang H, Wang Z, Wang X, Chen H, Shen Z, et al. Injury factors alter miRNAs profiles of exosomes derived from islets and circulation. Aging (Albany NY). 2018;10(12):3986-99. DOI: 10.18632/aging.10168910.18632/aging.101689632669130552311 Search in Google Scholar

21. Li W, Yang S, Qiao R, Zhang J. Potential Value of Urinary Exosome-Derived let-7c-5p in the Diagnosis and Progression of Type II Diabetic Nephropathy. Clin Lab. 2018;64(5):709-18. DOI: 10.7754/Clin. Lab.2018.171031 Search in Google Scholar

22. Chen D, Guo W, Qiu Z, Wang Q, Li Y, Liang L, et al. MicroRNA-30d-5p inhibits tumour cell proliferation and motility by directly targeting CCNE2 in non-small cell lung cancer. Cancer Lett. 2015;362(2):208-17. DOI: 10.1016/j.canlet.2015.03.04110.1016/j.canlet.2015.03.04125843294 Search in Google Scholar

23. Li X, Du N, Zhang Q, Li J, Chen X, Liu X, et al. MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis. 2014;5:e1479. DOI: 10.1038/cddis.2014.43010.1038/cddis.2014.430423725425341033 Search in Google Scholar

24. Caserta S, Kern F, Cohen J, Drage S, Newbury SF, Llewelyn MJ. Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS). Sci Rep. 2016;6:28006. DOI: 10.1038/srep2800610.1038/srep28006491325327320175 Search in Google Scholar

25. Pang L, Wang Y, Zheng M, Wang Q, Lin H, Zhang L, et al. Transcriptomic study of highglucose effects on human skin fibroblast cells. Mol Med Rep. 2016;13(3):2627-34. DOI: 10.3892/mmr.2016.482210.3892/mmr.2016.482226820167 Search in Google Scholar

26. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. DOI: 10.1016/j.diabres.2018.02.02310.1016/j.diabres.2018.02.02329496507 Search in Google Scholar

27. Mohan A, Singh RS, Kumari M, Garg D, Upadhyay A, Ecelbarger CM, et al. Urinary Exosomal microRNA-451-5p Is a Potential Early Biomarker of Diabetic Nephropathy in Rats. PloS one. 2016;11(4):e0154055. DOI: 10.1371/journal.pone.015405510.1371/journal.pone.0154055483971127101382 Search in Google Scholar

28. Lakhter AJ, Pratt RE, Moore RE, Doucette KK, Maier BF, DiMeglio LA, et al. Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes. Diabetologia. 2018;61(5):1124-34. DOI: 10.1007/s00125-018-4559-510.1007/s00125-018-4559-5587813229445851 Search in Google Scholar

29. Eissa S, Matboli M, Bekhet MM. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed Pharmacother. 2016;83:92-9. DOI: 10.1016/j.biopha.2016.06.01810.1016/j.biopha.2016.06.01827470555 Search in Google Scholar

30. Puglisi MJ, Fernandez ML. Modulation of C-reactive protein, tumor necrosis factor-alpha, and adiponectin by diet, exercise, and weight loss. J Nutr. 2008;138(12):2293-6. DOI: 10.3945/jn.108.09718810.3945/jn.108.09718819022947 Search in Google Scholar

31. Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr Physiol. 2018;9(1). DOI: 10.1002/cphy.c17004010.1002/cphy.c170040655758330549014 Search in Google Scholar

32. Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol. 2014;5:470. DOI: 10.3389/fimmu.2014.0047010.3389/fimmu.2014.00470417639725309549 Search in Google Scholar

33. Wang Y, Zhang H, Chen Q, Jiao F, Shi C, Pei M, et al. TNF-α/HMGB1 inflammation signalling pathway regulates pyroptosis during liver failure and acute kidney injury. Cell Prolif. 2020;53(6):e12829. DOI: 10.1111/cpr.1282910.1111/cpr.12829730959532419317 Search in Google Scholar

34. Liu F, Qiu H, Xue M, Zhang S, Zhang X, Xu J, et al. MSC-secreted TGF-β regulates lipopolysaccha-ride-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res Ther. 2019;10(1):345. DOI: 10.1186/s13287-019-1447-y10.1186/s13287-019-1447-y687863031771622 Search in Google Scholar

35. Li W, Hou G, Lv J, Lin F, Song G, Li R. MicroRNA-30d-5p ameliorates lipopolysaccharide-induced acute lung injury via activating AMPKα. Immunopharmacol Immunotoxicol. 2021;43(4):431-42. DOI: 10.1080/08923973.2021.193351710.1080/08923973.2021.193351734157933 Search in Google Scholar

36. Sun D, Luo T, Dong P, Zhang N, Chen J, Zhang S, et al. CD86/CD206 tumor-associated macrophages predict prognosis of patients with intrahepatic cholangiocarcinoma. PeerJ. 2020;8:e8458. DOI: 10.7717/peerj.845810.7717/peerj.8458698241432002338 Search in Google Scholar

37. Chylikova J, Dvorackova J, Tauber Z, Kamarad V. M1/M2 macrophage polarization in human obese adipose tissue. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162(2):79-82. DOI: 10.5507/bp.2018.01510.5507/bp.2018.01529765169 Search in Google Scholar

38. Fujimura T, Kambayashi Y, Furudate S, Kakizaki A, Aiba S. A possible mechanism in the recruitment of eosinophils and Th2 cells through CD163(+) M2 macrophages in the lesional skin of eosinophilic cellulitis. Eur J Dermatol. 2014;24(2):180-5. DOI: 10.1684/ejd.2014.228310.1684/ejd.2014.228324721436 Search in Google Scholar

eISSN:
2284-5623
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology