Otwarty dostęp

Cardiotoxicity - the first cause of morbidity and mortality in pediatric patients survivors of acute lymphoblastic leukemia


Zacytuj

1. Imbach P, Kuhne T, Arceci RJ. Introduction: Incidence and management of childhood cancer. In Imbach P, Kuhne T, Arceci RJ (editors). Pediatric Oncology, a comprehensive guide. Springer-Verlag Berlin Heidelberg. 2011; XVII-IX DOI: 10.1007/978-3-642-20359-610.1007/978-3-642-20359-6Search in Google Scholar

2. Sági JC, Egyed B, Kelemen A, Kutszegi N, Gezsi A, Herlitschke MA, et al. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer. 2018; 18(1):704 DOI: 10.1186/s12885-018-4629-610.1186/s12885-018-4629-6Search in Google Scholar

3. Spector LG, Ross JA, Robison LL, Bhatia S. Chapter 3. Epidemiology and etiology. In Pui CH (editor). Childhood Leukemias. Cambridge University Press, New York, USA. 2006; 48-66 DOI: 10.1017/CBO9780511471001.00410.1017/CBO9780511471001.004Search in Google Scholar

4. Silverman LB. Chapter 10: Acute lymphoblastic leukemia. In Orkin SH, Fisher DE, Look AT, Lux SE, Ginsburg D, Nathan DG (editors). Oncology of Infancy and Childhood. Elsevier, Philadelphia, USA. 2009; 297-330 DOI: 10.1016/B978-1-4160-3431-5.00010-810.1016/B978-1-4160-3431-5.00010-8Search in Google Scholar

5. Reulen RC, Winter DL, Frobisher C, Lancashire ER, Stiller CA, Jenney ME, et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA. 2010; 304:172-9 DOI: 10.1001/jama.2010.92310.1001/jama.2010.923Search in Google Scholar

6. Harake D, Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol. 2012; 8(4):647-70 DOI: 10.2217/fca.12.4410.2217/fca.12.44Search in Google Scholar

7. Smith OP, Hann IM. Chapter 20. Clinical features and therapy of lymphoblastic leukemia. In Arceci RJ., Hann IM, Smith OP (editors). Pediatric Hematology. Blackwell Publishing, Massachusettes, USA. 2006; 450-81 DOI: 10.1002/9780470987001.ch2010.1002/9780470987001.ch20Search in Google Scholar

8. Christenson ES, James T, Agrawal V, Park BH. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem. 2014; 48(0):223-35 DOI: 10.1016/j.clinbiochem.2014.10.01310.1016/j.clinbiochem.2014.10.013Search in Google Scholar

9. Mitry MA, Edwards JG. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Int J Cardiol Heart Vasc. 2015; 10:17-24 DOI: 10.1016/j. ijcha.2015.11.004Search in Google Scholar

10. Wang GX, Wang YX, Zhou XB, Korth M. Effects of doxorubicinol on excitation-contraction coupling in guinea pig ventricular myocytes. Eur J Pharmacol. 2001; 423:99-107 DOI: 10.1016/S0014-2999(01)01096-210.1016/S0014-2999(01)01096-2Search in Google Scholar

11. Van der Pal HJ, Van Dalen EC. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol. 2012; 30(13):1429-37 DOI: 10.1200/JCO.2010.33.473010.1200/JCO.2010.33.473022473161Search in Google Scholar

12. Radu LE, Beldiman A, Ghiorghiu I, Oprescu A, Arion C, Colita A. The use of biomarkers in detecting subclinical cardiotoxicity in doxorubicin-based treatment for paediatric patients with acute lymphoblastic leukaemia. Rev Rom Med Lab. 2017; 25(2):157-64 DOI: 10.1515/rrlm-2017-001410.1515/rrlm-2017-0014Search in Google Scholar

13. Moazeni S, Cadeiras M, Yanh EH, Deng MC, Nguyen KL. Anthracycline induced cardiotoxicity: biomarkers and „Omics” technology in the era of patient specific care. Clin Transl Med. 2017; 6:17 DOI: 10.1186/s40169-017-0148-310.1186/s40169-017-0148-3542536128493232Search in Google Scholar

14. Pizzino F, Vizzari G, Qamar R, Bomzer C, Carerj S, Zito C, et al. Multumodality Imaging in Cardiooncology. J Oncol. 2015; 11:263950 DOI: 10.1155/2015/26395010.1155/2015/263950453774726300915Search in Google Scholar

15. Speyer SL, Kobrinsky B, Ewer MS. Chapter 63: Cardiac effects of cancer therapy. In Abeloff MD, Armitage JO, Niederhuber JE, Kastan M, Mckenna WG (editors). Abeloff’s Clinical Oncology, 4th Edition. Elsevier, Philadelphia, USA. 2013; 983-96Search in Google Scholar

16. Gillespie HS, McGann CJ, Wilson BD. Noninvasive diagnosis of chemotherapy related cardiotoxicity. Curr Cardio Rev. 2011; 7:234-44 DOI: 10.2174/15734031179996067210.2174/157340311799960672332244122758624Search in Google Scholar

17. Lipshultz SE, Rusconi P, Scully RE. Chapter 18: assessment of cardiotoxicity during anti-cancer therapy. In Januzzi JL, Bayes-Genis A (editors). NT-proBNP as a Biomarker in Cardiovascular Diseases. Prous Science SA, Barcelona, Spain. 2007; 193-8Search in Google Scholar

18. Vejpongsa P, Yeh ETH. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014; 64(9):938-45 DOI: 10.1016/j. jacc.2014.06.1167Search in Google Scholar

19. Lipshultz SE, Lipsitz SR, Kutok JL, Miller TL, Colan SD, Neuberg DS, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013; 119(19):3555-62 DOI: 10.1002/cncr.2825610.1002/cncr.28256378806523861158Search in Google Scholar

20. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB. Anthracycline cardiotoxicity: From Bench to bedside. J Clin Oncol. 2008; 26(22):3777-84 DOI: 10.1200/JCO.2007.14.940110.1200/JCO.2007.14.9401301829018669466Search in Google Scholar

21. Huang C, Zhang X, Ramil JM, Rikka S, Kim L, Lee Y, et al. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. 2010; 121:675-83 DOI: 10.1161/CIRCULATIONAHA.109.90222110.1161/CIRCULATIONAHA.109.902221283427120100968Search in Google Scholar

22. Hahn VS, Lenihan DJ, Ky B. Cancer therapy-induced cardiotoxicity: basic mecanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014; 3:e000665 DOI: 10.1161/JAHA.113.00066510.1161/JAHA.113.000665418751624755151Search in Google Scholar

23. Blanco JG, Sun CL, Landler W, Chen L, Esparza-Duran D, Leisenring W, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes--a report from the Children’s Oncology Group. J Clin Oncol. 2012; 30(13):1415-21 DOI: 10.1200/JCO.2011.34.898710.1200/JCO.2011.34.8987338311722124095Search in Google Scholar

24. Fulbright JM. Review of Cardiotoxicity in Pediatric Cancer Patients: During and after Therapy. Cardiol Res Pract. 2011; 942090 DOI: 10.4061/2011/94209010.4061/2011/942090310232421637324Search in Google Scholar

25. Galderisi M, Marra F, Esposito R, Lomoriello VS, Pardo M, de Divitiis O. Cancer therapy and cardiotoxicity: The need of serial Doppler echocardiography. Cardiovasc Ultrasound. 2007; 5:4 DOI: 10.1186/1476-7120-5-410.1186/1476-7120-5-4179423317254324Search in Google Scholar

26. Martins de Souza D. Is the word „biomarker” being properly used by proteomics research in neuroscience? Eur Arch Psychiatry Clin Neurosc. 2010; 260:561-2 DOI: 10.1007/s00406-010-0105-210.1007/s00406-010-0105-2295363320155362Search in Google Scholar

27. Horacek JM, Vasatova M, Pudil R, Tichy M, Zak P, Jakl M, et al. Biomarkers for the early detection of anthracycline-induced cardiotoxicity: current status. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014; 158(4):511-7 DOI: 10.5507/bp.2014.00410.5507/bp.2014.00424457832Search in Google Scholar

28. Sheppard RJ, Berger J, Sebag IA. Cardiotoxicity of cancer therapeutics: current issues in screening, prevention and therapy. Frontiers in Pharmacology. 2013; 4:19 DOI: 10.3389/fphar.2013.0001910.3389/fphar.2013.00019359474123487556Search in Google Scholar

29. De Lemos JA. Increasingly sensitive assays for cardiac troponins: a review. Jama. 2013; 309(21):2262-9 DOI: 10.1001/jama.2013.580910.1001/jama.2013.580923736735Search in Google Scholar

30. Oztarhan K, Guler S, Aktas B, Arsian M, Salcioglu Z, Aydogan G. The value of echocardiography versus cardiac troponin i levels in the early detection of anthracycline cardiotoxicity in childhood acute leukemia: Prospective evaluation of a 7-year-long clinical follow-up. Pediatr Hematol Oncol. 2011; 28(5):380-94 DOI: 10.3109/08880018.2011.56377210.3109/08880018.2011.56377221699467Search in Google Scholar

31. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004; 109(22):2749-54 DOI: 10.1161/01. CIR.0000130926.51766.CCSearch in Google Scholar

32. Lee HS, Son CB, Shin SH, Kim YS. Clinical correlation between brain natriuretic peptide and anthracycline-induced cardiac toxicity. Cancer Res Treat. 2008; 40(3):121-6 DOI: 10.4143/crt.2008.40.3.12110.4143/crt.2008.40.3.121269746819688118Search in Google Scholar

33. Soker M, Kervancioglu M. Plasma concentration on NT-pro-BNP and cardiac troponin-I in relation to doxorubicin-induced cardiomyopathy and cardiac function in childhood malignancy. Saudi Med J. 2005; 26(8):1197-202Search in Google Scholar

34. Specchia G, Buquicchio C, Pansini N, di Serio F, Liso V, Pastore D, et al. Monitoring of cardiac function on the basis of serum troponin I levels in patients with acute leukemia treated with anthracyclines. J Lab Clin Med. 2005; 145(4):212-20 DOI: 10.1016/j.lab.2005.02.00310.1016/j.lab.2005.02.00315962840Search in Google Scholar

35. Tian S, Hirshfield KM, Jabbour SK, Toppmeyer D, Haffty B, Gm Khan AJ, et al. Serum Biomarkers for the Detection of Cardiac Toxicity after Chemotherapy and Radiation Therapy in Breast Cancer Patients. Front Oncol. 2014; 4:277 DOI: 10.3389/fonc.2014.0027710.3389/fonc.2014.00277419117125346912Search in Google Scholar

36. Romano S, Fratini S, Ricevuto E, Procaccini V, Stifano G, Mancini M, et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br J Cancer. 2011; 105(11):1663-8 DOI: 10.1038/bjc.2011.43910.1038/bjc.2011.439324259722068815Search in Google Scholar

37. Cil T, Kaplan AM, Altintas A, Akin AM, Alan S, Isikdogan A. Use of N-terminal pro-brain natriuretic peptide to assess left ventricular function after adjuvant doxorubicin therapy in early breast cancer patients: a prospective series. Clin Drug Investig. 2009; 29(2):131-7 DOI: 10.2165/0044011-200929020-0000710.2165/0044011-200929020-0000719133708Search in Google Scholar

38. Feola M, Garrone O, Occelli M, Francini A, Biggi A, Visconti G, et al. Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: effects on left ventricular ejection fraction, troponin I and brain natriuretic peptide. Int J Cardiol. 2011; 148(2):194-8 DOI: 10.1016/j.ijcard.2009.09.56410.1016/j.ijcard.2009.09.56419945181Search in Google Scholar

39. Garrone O, Crosetto N, lo Nigro C, Carzeddu T, Vivenza D, Monteverde M, et al. Prediction of anthracycline cardiotoxicity after chemotherapy by biomarkers kinetic analysis. Cardiovasc Toxicol. 2012; 12(2):135-42 DOI: 10.1007/s12012-011-9149-410.1007/s12012-011-9149-422189487Search in Google Scholar

40. El-Shitany NA, Tolba OA, El-Shanshory MR, El-Ha-wary EE. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012; 18(8):607-13 DOI: 10.1016/j.cardfail.2012.06.41610.1016/j.cardfail.2012.06.41622858075Search in Google Scholar

41. Xu XY, Huang MR, Tang JY, Zhang YQ, Wu YR, Zhou M. Evaluation of early monitoring of cardiotoxicity induced by anthracyclines. Zhongguo Dand Dai Er Ke Za Zhi. 2011; 13(6):490-4Search in Google Scholar

42. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011; 107(9):1375-80 DOI: 10.1016/j.amjcard.2011.01.00610.1016/j.amjcard.2011.01.006370331421371685Search in Google Scholar

43. Kang Y, Xu X, Cheng L, Li L, Sun M, Chen H, et al. Two-dimensional speckle tracking echocardiography combined with high-sensitive cardiac troponin T in early detection and prediction of cardiotoxicity during epirubicine-based chemotherapy. Eur J Heart Fail. 2014; 16(3):300-8 DOI: 10.1002/ejhf.810.1002/ejhf.824464946Search in Google Scholar

44. ElGhandour AH, Sorady ME, Azab S, ElRahman M. Human heart-type fatty acid-binding protein as an early diagnostic marker of doxorubicin cardiac toxicity. Hematol Rev. 2009; 1(1):e6 DOI: 10.4081/hr.2009.e610.4081/hr.2009.e6Search in Google Scholar

45. Sayed-Ahmed MM, Al-Shabanah OA, Hafez MM, Aleisa AM, Al-Rejale SS. Inhibition of gene expression of heart fatty acid binding protein and organic cation-carnitine transporter in doxorubicin cardiomyopathic rat model. Eur J Pharmacol. 2010; 640:143-9 DOI: 10.1016/j.ejphar.2010.05.00210.1016/j.ejphar.2010.05.00220470772Search in Google Scholar

46. Ozturk G, Tavil B, Ozguner M, Ginis Z, Erden G, Turic B, et al. Evaluation of Cardiac Markers in Children Undergoing Hematopoietic Stem Cell Transplantation. J Clin Lab Anal. 2015; 29(4):259-62 DOI: 10.1002/jcla.2176010.1002/jcla.21760680673324840114Search in Google Scholar

47. Horacek JM, Vasatova M, Tichy M, Pudli R, Jebavy L, Maly J. The use of cardiac biomarkers in detection of cardiotoxicity associated with conventional and high-dose chemotherapy for acute leukemia. Exp Oncol. 2010; 32(2):97-9Search in Google Scholar

48. Lai R, Wang X, Zhang X, Lin WQ, Rong TH. Heart fatty acid-binding protein may not be an early biomarker for anthracycline-induced cardiotoxicity in rabbits. Med Oncol. 2012; 29(3):2303-8 DOI: 10.1007/s12032-011-9843-x10.1007/s12032-011-9843-x21308490Search in Google Scholar

49. Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014; 63(8):809-16 DOI: 10.1016/j.jacc.2013.10.06110.1016/j.jacc.2013.10.061Search in Google Scholar

50. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011; 31(11):2383-90 DOI: 10.1161/ATVBAHA.111.22669610.1161/ATVBAHA.111.226696Search in Google Scholar

51. Lipshultz SE, Scully RE, Lipsitz SR, Sallan SE, Silverman LB, Miller TL, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multi-centre trial. Lancet Oncol. 2010; 11(10):950-61 DOI: 10.1016/S1470-2045(10)70204-710.1016/S1470-2045(10)70204-7Search in Google Scholar

52. Monti M, Terzuoli E, Ziche M, Morbidelli L. The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis. Pharmacol Res. 2013; 76:171-81 DOI: 10.1016/j. phrs.2013.08.003Search in Google Scholar

53. Konishi M, Haraguchi G, Ohigashi H, Ishihara R, Salto K, Nakano Y, et al. Adiponectin protects against doxorubicin-induced cardiomyopathy by anti-apoptotic effects through AMPK upregulation. Cardiovasc Res. 2011; 89(2):309-19 DOI: 10.1093/cvr/cvq33510.1093/cvr/cvq33520978005Search in Google Scholar

54. Viner RM, Hsia Y, Tomsic T, Wong I. Efficacy and safety of anti-obesity drugs in children and adolescents: systematic review and meta-analysis. Obes Rev. 2010; 11:593-602 DOI: 10.1111/j.1467-789X.2009.00651.x10.1111/j.1467-789X.2009.00651.x19922432Search in Google Scholar

eISSN:
2284-5623
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology