Zacytuj

1. AN, W., JIANG, L., SUN, J., LIEW, K. M. 2015. Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. Journal of Thermal Analysis and Calorimetry.119(1). pp. 229-238.10.1007/s10973-014-4165-9Search in Google Scholar

2. BARNES, M. A., BRIGGS, P. J., HIRSCHLER, M. M., MATHESON, A. F., O’NEILL, T. J. 1996. A Comparative Study of the Fire Performance of Halogenated and Non-Halogenated Materials for Cable Applications. Part I Tests on Materials and Insulated Wires. Fire and Materials. 20(1). pp. 1-16.10.1002/(SICI)1099-1018(199601)20:1<1::AID-FAM553>3.0.CO;2-WSearch in Google Scholar

3. BLUHME, D. A. 1987. ISO ignitability test and proposed criteria. Fire and materials. 11(4). pp. 195-199.10.1002/fam.810110406Search in Google Scholar

4. COURTY, L., GARO, J. P. 2017. External heating of electrical cables and auto-ignition investigation. Journal of hazardous materials. 321. pp. 528-536.10.1016/j.jhazmat.2016.09.042Search in Google Scholar

5. DELICHATSIOS, M. A., PANAGIOTOU, T. H., KILEY, F. (1991). The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis. Combustion and Flame. 84(3-4). pp. 323-332.10.1016/0010-2180(91)90009-ZSearch in Google Scholar

6. FATEH, T., ROGAUME, T., LUCHE, J., FRANCK, R., JABOUILLE, F. 2014. Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter–FTIR apparatus. Journal of Analytical and Applied Pyrolysis. 107. pp. 87-100.10.1016/j.jaap.2014.02.008Search in Google Scholar

7. HARPER, C. A. 2000. Modern Plastics Handbook: Handbook. McGraw-Hill Professional.Search in Google Scholar

8. HARRIMAN, L. 2002. Environmental, health and safety issues in the coated wire and cable industry. Greiner Environmental, Inc. Massachusetts Toxics Use Reduction Institute. University of Massachusetts Lowell. One University Ave. Lowell.Search in Google Scholar

9. HENRIST, C., RULMONT, A., CLOOTS, R., GILBERT, B., BERNARD, A., BEYER, G. 2000. Toward the understanding of the thermal degradation of commercially available fire-resistant cable. Materials letters. 46(2-3). pp. 160-168.10.1016/S0167-577X(00)00161-0Search in Google Scholar

10. HIRSCHLER, M. M. 1994. Comparison of large- and small-scale heat release tests with electrical cables. Fire and Materials. 18(2). pp. 61-76.10.1002/fam.810180202Search in Google Scholar

11. http://www.vuki.sk/sites/default/files/tmp/4_chke-v_b2cas1d1ps306090_sj_0.pdf [04/18/2018]Search in Google Scholar

12. JANSSENS, M. 1991. A thermal model for piloted ignition of wood including variable thermophysical properties. Fire Safety Science. 3. pp. 167-17610.3801/IAFSS.FSS.3-167Search in Google Scholar

13. LAWSON, D. I., SIMMS, U. D. 1952. The ignition of wood by radiation. British Journal of Applied Physics. 3(9). pp. 288.10.1088/0508-3443/3/9/305Search in Google Scholar

14. MEINIER, R., SONNIER, R., ZAVALETA, P., SUARD, S., FERRY, L. 2018. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. Journal of hazardous materials. 342, pp. 306-316.10.1016/j.jhazmat.2017.08.027Search in Google Scholar

15. MIKKOLA, E., WICHMAN, I. S. 1989. On the thermal ignition of combustible materials. Fire and Materials. 14(3). pp. 87-96.10.1002/fam.810140303Search in Google Scholar

16. MOORE, G. F. (Ed.). (2000). Electric Cables Handbook: BICCCables. Blackwell Science.Search in Google Scholar

17. NAZARE, S., KANDOLA, B., HORROCKS, A. R. 2002. Use of cone calorimetry to quantify the burning hazard of apparel fabrics. Fire and Materials. 26(4-5). pp. 191-199.10.1002/fam.796Search in Google Scholar

18. RANTUCH, P., HRUŠOVSKÝ, I. MARTINKA, J., BALOG, K. 2016. Determination of the critical heat flux and the corresponding surface ignition temperature of expanded cork plates. Wood & Fire Safety: proceedings of the 8th International Conference. The High Tatras, Štrbské Pleso, 8. - 12. May 2016. pp. 261-268.Search in Google Scholar

19. RHODES, B. T., QUINTIERE, J. G. 1996. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Safety Journal. 26(3). pp. 221-240.10.1016/S0379-7112(96)00025-2Search in Google Scholar

20. TEWARSON, A. 1994. Flammability parameters of materials: ignition, combustion, and fire propagation. Journal of Fire Sciences. 12(4). pp. 329-356.10.1177/073490419401200401Search in Google Scholar

21. TEWARSON, A. 2002. Generation of heat and chemical compounds in fires. SFPE handbook of fire protection engineering.Search in Google Scholar

22. TEWARSON, A., KHAN, M. M. 1989. Fire propagation behavior of electrical cables. Fire Safety Science. 2, pp. 791-800.10.3801/IAFSS.FSS.2-791Search in Google Scholar

23. TSAI, K. C. 2009. Orientation effect on cone calorimeter test results to assess fire hazard of materials. Journal of hazardous materials. 172(2-3). pp. 763-772.10.1016/j.jhazmat.2009.07.06119665837Search in Google Scholar

24. ZHANG, J., DELICHATSIOS, M. A., BOURBIGOT, S. 2009. Experimental and numerical study of the effects of nanoparticles on pyrolysis of a polyamide 6 (PA6) nanocomposite in the cone calorimeter. Combustion and Flame. 156(11). pp. 2056-2062.10.1016/j.combustflame.2009.08.002Search in Google Scholar

eISSN:
1338-0532
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other