1. bookTom 8 (2021): Zeszyt 15 (November 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2182-1976
Pierwsze wydanie
16 Apr 2016
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
access type Otwarty dostęp

Diameter-Separation of Chessboard Graphs

Data publikacji: 07 Dec 2021
Tom & Zeszyt: Tom 8 (2021) - Zeszyt 15 (November 2021)
Zakres stron: 13 - 26
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2182-1976
Pierwsze wydanie
16 Apr 2016
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

We define the queens (resp., rooks) diameter-separation number to be the minimum number of pawns for which some placement of those pawns on an n × n board produces a board with a queens graph (resp., rooks graph) with a desired diameter d. We determine these numbers for some small values of d.

[BS09] J. Bell, B. Stevens, “A survey of known results and research areas for n-queens‘”, Discrete Math. 309 (1) (2009), 1–31.10.1016/j.disc.2007.12.043 Search in Google Scholar

[Cha09] R. D. Chatham, M. Doyle, G. H. Fricke, J. Reitmann, R. D. Skaggs, M. Wolff, “Independence and Domination Separation in Chessboard Graphs”, Journal of Combinatorial Mathematics and Combinatorial Computing 68(2009), 3–17. Search in Google Scholar

[Raz08] M.A. Razzaque, C.S. Hong, M. Abdullah-Al-Wadud, O. Chae (2008) “A Fast Algorithm to Calculate Powers of a Boolean Matrix for Diameter Computation of Random Graphs”. In: S. Nakano, M.S. Rahman (eds) WALCOM: Algorithms and Computation. WALCOM 2008. Lecture Notes in Computer Science, vol 4921. Springer, Berlin, Heidelberg. Search in Google Scholar

[Wat04] J.J. Watkins, “Across the Board: The Mathematics of Chessboard Problems”, Princeton University Press (2004).10.1515/9781400840922 Search in Google Scholar

[Wes00] D.B. West. “Introduction to Graph Theory”, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey (2000). Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo