Zacytuj

1. Trapeznikov NN, Poddubnaya IV. Handbook of Oncology. Editor Academician of the Russian Academy of Medical Sciences. Moscow: Kappa; 1996. Search in Google Scholar

2. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):32137.e10. DOI: 10.1016/j.cell.2018.03.035.10.1016/j.cell.2018.03.035607035329625050 Search in Google Scholar

3. Pollard T, Earnshaw W, Lippincott-Schwartz J, Johnson G. Cell biology. 3rd edition. Philadelphia, PA: Elsevier; 2017. Search in Google Scholar

4. Ezkurdia I, Juan D, Rodriguez J M, Frankish A, Diekhans M, Harrow J, et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet. 2014;23(22):5866-78. DOI: 10.1093/hmg/ddu309.10.1093/hmg/ddu309420476824939910 Search in Google Scholar

5. Malarkey DE, Hoenerhoff M, Maronpot RR. Carcinogenesis: mechanisms and manifestations. In: Bolon B, Haschek W, Rousseaux C, Ochoa R, Wallig M. Haschek and Rousseaux’s handbook of toxicologic pathology. 3rd Edition. Academic Press; 2013, p.107-46.10.1016/B978-0-12-415759-0.00005-4 Search in Google Scholar

6. Becnel LB, Ochsner SA, Darlington YF, McOwiti A, Kankanamge WH, Dehart M, et al. Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in Transcriptomine. Sci Signal. 2017;10(476):eaah6275. DOI: 10.1126/scisignal.aah6275.10.1126/scisignal.aah627528442630 Search in Google Scholar

7. Ochsner SA, Abraham D, Martin K, Ding W, McOwiti A, Kankanamge W, et al. The Signaling Pathways Project, an integrated ‘omics knowledgebase for mammalian cellular signaling pathways. Sci Data. 2019;6(1):252. DOI: 10.1038/s41597-019-0193-4.10.1038/s41597-019-0193-4682342831672983 Search in Google Scholar

8. Pecorino L. Molecular biology of cancer: mechanisms, targets, and therapeutics. 3rd edition. Oxford University Press; 2012. Search in Google Scholar

9. Yoo M, Hatfield DL. The cancer stem cell theory: Is it correct? Mol Cells. 2008;26(5):514-6. Search in Google Scholar

10. Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol. 2009;21(2):245-55. DOI: 10.1016/j.ceb.2009.01.018.10.1016/j.ceb.2009.01.018269968719230643 Search in Google Scholar

11. Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2001;2:21-32.10.1038/3504809611413462 Search in Google Scholar

12. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079-93. DOI: 10.1242/dev.091744.10.1242/dev.09174423861057 Search in Google Scholar

13. Gopinathan L, Ratnacaram CK, Kaldis P. Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results Probl Cell Differ. 2011;53:365-89. DOI: 10.1007/978-3-642-19065-0_16.10.1007/978-3-642-19065-0_1621630153 Search in Google Scholar

14. Kato S, Schwaederle M, Daniels GA, Piccioni D, Kesari S, Bazhenova L, et al. Cyclin-dependent kinase pathway aberrations in diverse malignancies: clinical and molecular characteristics. Cell Cycle. 2015;14(8):1252-9. DOI: 10.1080/15384101.2015.1014149.10.1080/15384101.2015.1014149461486725695927 Search in Google Scholar

15. Foster SS, De S, Johnson LK, Petrini JH, Stracker TH. Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression. Proc Natl Acad Sci U S A. 2012;109(25):9953-8. DOI: 10.1073/pnas.1120476109.10.1073/pnas.1120476109 Search in Google Scholar

16. Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res. 2014;329(1):85-93. DOI: 10.1016/j.yexcr.2014.09.030.10.1016/j.yexcr.2014.09.030 Search in Google Scholar

17. Visconti R, Della Monica R, Grieco D. Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J Exp Clin Cancer Res. 2016;35(1):153. DOI: 10.1186/s13046-016-0433-9.10.1186/s13046-016-0433-9 Search in Google Scholar

18. Rubin SM. Deciphering the retinoblastoma protein phosphorylation code. Trends Biochem Sci. 2013;38(1):12-9. DOI: 10.1016/j.tibs.2012.10.007.10.1016/j.tibs.2012.10.007 Search in Google Scholar

19. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell. 1989;58(6):1085-95. DOI: 10.1016/0092-8674(89)90507-2.10.1016/0092-8674(89)90507-2 Search in Google Scholar

20. Pardal R, Molofsky AV, He S, Morrison SJ. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb Symp Quant Biol. 2005;70:177-85. DOI: 10.1101/sqb.2005.70.057.10.1101/sqb.2005.70.05716869752 Search in Google Scholar

21. Mesplede T, Gagnon D, Bergeron-Labrecque F, Azar I, Senechal H, Coutlee F, et al. p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J Virol. 2012;86(1):94-107. DOI: 10.1128/JVI.00751-11.10.1128/JVI.00751-11325587522013048 Search in Google Scholar

22. El-Deiry WS. p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 2016;76(18):5189-91. DOI: 10.1158/0008-5472.CAN-16-2055.10.1158/0008-5472.CAN-16-2055502810827635040 Search in Google Scholar

23. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93-115. DOI: 10.1038/nrc.2016.138.10.1038/nrc.2016.138534593328127048 Search in Google Scholar

24. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):191234. DOI: 10.1126/science.1075762.10.1126/science.107576212471243 Search in Google Scholar

25. Wallace MD, Southard TL, Schimenti KJ, Schimenti JC. Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress. Oncogene. 2014;33(28):3688-95. DOI: 10.1038/onc.2013.339.10.1038/onc.2013.339393600423975433 Search in Google Scholar

26. Polatova DS. 413P - The state of molecular biological markers in osteosarcoma. Ann Oncol. 2019;30(Suppl 9):ix138.10.1093/annonc/mdz433.010 Search in Google Scholar

27. Malik-Rachline G, Hacohen-Lev-Ran A, Seger R. Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int J Mol Sci. 2019;20(5):1194. DOI: 10.3390/ijms20051194.10.3390/ijms20051194642906030857244 Search in Google Scholar

28. Grimaldi AM, Simeone E, Festino L, Vanella V, Strudel M, Ascierto PA. MEK Inhibitors in the treatment of metastatic melanoma and solid tumors. Am J Clin Dermatol. 2017;18(6):745-54. DOI: 10.1007/s40257-017-0292-y.10.1007/s40257-017-0292-y28537004 Search in Google Scholar

29. Bustelo XR. RHO GTPases in cancer: known facts, open questions, and therapeutic challenges. Biochem Soc Trans. 2018;46(3):741-60. DOI: 10.1042/BST20170531.10.1042/BST2017053129871878 Search in Google Scholar

30. Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther. 2018;187:45-60. DOI: 10.1016/j.pharmathera.2018.02.007. Search in Google Scholar

31. Bandaru P, Kondo Y, Kuriyan J. The interdependent activation of sonofsevenless and Ras. Cold Spring Harb Perspect Med. 2019;9(2):a031534. DOI: 10.1101/cshperspect.a031534.10.1101/cshperspect.a031534636087029610148 Search in Google Scholar

32. Buffet C, Hecale-Perlemoine K, Bricaire L, Dumont F, Baudry C, Tissier F, et al. DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers. PLoS ONE. 2017;12(9):e0184861. DOI: 10.1371/journal.pone.0184861.eCollection 2017. Search in Google Scholar

33. Cheng Y. Tian H. Current development status of MEK inhibitors. Molecules. 2017;22(10):1551. DOI: 10.3390/molecules22101551.10.3390/molecules22101551615181328954413 Search in Google Scholar

34. Eblen ST. Extracellular regulated kinases: Signaling from Ras to ERK substrates to control biological outcomes. Adv Cancer Res. 2018;138:99-142. DOI: 10.1016/bs.acr.2018.02.004.10.1016/bs.acr.2018.02.004600798229551131 Search in Google Scholar

35. Frodyma D, Neilsen B, Costanzo-Garvey D, Fisher K, Lewis R. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras. F1000Res. 2017;6:1621. DOI: 10.12688/f1000research.11895. eCollection 2017. Search in Google Scholar

36. García-Gómez R, Bustelo XR, Crespo P. Protein-protein interactions: Emerging oncotargets in the RAS-ERK pathway. Trends Cancer. 2018;4(9):61633. DOI: 10.1016/j,trecan.2018.07.002. Search in Google Scholar

37. Geenen JJJ, Schellens JHM. Molecular pathways: targeting the protein kinase Wee1 in cancer. Clin Cancer Res. 2017;23(16):4540–4. DOI: 10.1158/1078-0432.CCR-17-0520.10.1158/1078-0432.CCR-17-052028442503 Search in Google Scholar

38. Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16(5):281-98. DOI: 10.1038/nrm3979.10.1038/nrm397925907612 Search in Google Scholar

39. Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, et al. The roles of MAPKs in disease. Cell Res. 2008;18(4):43642. DOI: 10.1038/cr.2008.37.10.1038/cr.2008.37 Search in Google Scholar

40. Dohlman HG, Campbell SL. Regulation of large and small G proteins by ubiquitination. J Biol Chem. 2019;294(49):1861323. DOI: 10.1074/jbc.REV119.011068.10.1074/jbc.REV119.011068 Search in Google Scholar

41. Dummer R, Schadendorf D, Ascierto PA, Arance A, Dutriaux C, Di Giacomo AM, et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(4):435-45. DOI: 10.1016/S1470-2045(17)30180-8.10.1016/S1470-2045(17)30180-8 Search in Google Scholar

42. Herrero A, Pinto A, Colon-Bolea P, Casar B, Jones M, Agudo-Ibanez L, et al. Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell. 2015;28(2):170-82. DOI: 10.1016/j.ccell.2015.07.001.10.1016/j.ccell.2015.07.00126267534 Search in Google Scholar

43. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):1733. DOI: 10.1016/j.cell.2017.06.009.10.1016/j.cell.2017.06.009555561028666118 Search in Google Scholar

44. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997-2007. DOI: 10.3892/etm.2020.8454.10.3892/etm.2020.8454702716332104259 Search in Google Scholar

45. Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS. Targeting TRK family proteins in cancer. Pharmacol Ther. 2017;173:5866. DOI: 10.1016/j.pharmthera.2017.02.006.10.1016/j.pharmthera.2017.02.00628174090 Search in Google Scholar

46. Sanchez JN, Wang T, Cohen MS. BRAF and MEK inhibitors: Use and resistance in BRAFmutated cancers. Drugs. 2018;78(5):54966. DOI: 10.1007/s40265-018-0884-8.10.1007/s40265-018-0884-8608061629488071 Search in Google Scholar

47. Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta Mol Cell Res. 2011;1813(9):161933. DOI: 10.1016/j.bbamcr.2010.12.012.10.1016/j.bbamcr.2010.12.01221167873 Search in Google Scholar

48. Roskoski R Jr. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res. 2012;66(2):10543. DOI: 10.1016/j.phrs.2012.04.005.10.1016/j.phrs.2012.04.00522569528 Search in Google Scholar

49. Roskoski R Jr. Targeting ERK1/2 proteinserine/threonine kinases in human cancers. Pharmacol Res. 2019;142:15168. DOI: 10.1016/j.phrs.2019.01.039.10.1016/j.phrs.2019.01.03930794926 Search in Google Scholar

50. Wainstein E, Seger R. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles. Curr Opin Cell Biol. 2016;39:1520. DOI: 10.1016/j.ceb.2016.01.007.10.1016/j.ceb.2016.01.00726827288 Search in Google Scholar

51. Cassier E, Gallay N, Bourquard T, Claeysen S, Bockaert J, Crepieux P, et al. Phosphorylation of β-arrestin2 at Thr383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs. Elife. 2017;6:e23777. DOI: 10.7554/eLife.23777.10.7554/eLife.23777532562128169830 Search in Google Scholar

52. Muñoz-Maldonado C, Zimmer Y, Medová M. A comparative analysis of individual RAS mutations in cancer biology. Front Oncol. 2019;9:1088. DOI: 10.3389/fonc.2019.01088. eCollection 2019.10.3389/fonc.2019.01088681320031681616 Search in Google Scholar

53. Ma Y, Xu Y, Li L. SPARCL1 suppresses the proliferation and migration of human ovarian cancer cells via the MEK/ERK signaling. Exp Ther Med. 2018;16(4):3195-201. DOI: 10.3892/etm.2018.6575.10.3892/etm.2018.6575614384030233672 Search in Google Scholar

54. Mahapatra DK, Asati V, Bharti SK. MEK inhibitors in oncology: a patent review (2015–Present). Expert Opin Ther Pat. 2017;27(8):887-906. DOI: 10.1080/13543776.2017.1339688.10.1080/13543776.2017.133968828594589 Search in Google Scholar

55. Rukhlenko OS, Khorsand F, Krstic A, Rozanc J, Alexopoulos LG, Rauch N, et al. Dissecting RAF inhibitor resistance by structurebased modeling reveals ways to overcome oncogenic RAS signaling. Cell Syst. 2018;7(2):161179.e14. DOI: 10.1016/j.cels.2018.06.002.10.1016/j.cels.2018.06.002614954530007540 Search in Google Scholar

56. Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAFmutated melanoma and beyond. Nat Rev Cancer. 2014;14(7):45567. DOI: 10.1038/nrc3760.10.1038/nrc3760425023024957944 Search in Google Scholar

57. Vandamme D, Herrero A, AlMulla F, Kolch W. Regulation of the MAPK pathway by raf kinase inhibitory protein. Crit Rev Oncog. 2014;19(6):40515. DOI: 10.1615/critrevoncog.2014011922.10.1615/CritRevOncog.2014011922 Search in Google Scholar

58. Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30(20):25229. DOI: 10.1200/JCO.2011.41.2452.10.1200/JCO.2011.41.245222614978 Search in Google Scholar

59. Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene. 2018;37(24):3183-199. DOI: 10.1038/s41388-018-0171-x.10.1038/s41388-018-0171-x29540830 Search in Google Scholar

60. Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, et al. MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5BMK1/ERK5 pathway. J Biol Chem. 2001;276(7):5093100. DOI: 10.1074/jbc.M003719200.10.1074/jbc.M00371920011073940 Search in Google Scholar

61. Terrell EM, Morrison DK. Rasmediated activation of the Raf family kinases. Cold Spring Harb Perspect Med. 2019;9(1):a033746. DOI: 10.1101/cshperspect.a033746.10.1101/cshperspect.a033746631114929358316 Search in Google Scholar

62. Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, et al. NonV600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 2017;35(23):262430. DOI: 10.1200/JCO.2016.71.4394.10.1200/JCO.2016.71.4394554945428486044 Search in Google Scholar

63. Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. Biochim Biophys Acta Mol Cell Res. 2019;1866(1):12443. DOI: 10.1016/j.bbamcr.2018.09.002.10.1016/j.bbamcr.2018.09.002622738030401534 Search in Google Scholar

64. Wang C, Chen Z, Nie L, Tang M, Feng X, Su D, et al. Extracellular signal-regulated kinases associate with and phosphorylate DHPS to promote cell proliferation. Oncogenesis. 2020;9(9):85. DOI: 10.1038/s41389-020-00271-1.10.1038/s41389-020-00271-1752227832989218 Search in Google Scholar

65. Zhou B, Der CJ, Cox AD. The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol. 2016;58:609. DOI: 10.1016/j.semcdb.2016.07.012.10.1016/j.semcdb.2016.07.012502830327422332 Search in Google Scholar

66. Lu P, Chen J, Yan L, Yang L, Zhang L, Dai J, et al. RasGRF2 promotes migration and invasion of colorectal cancer cells by modulating expression of MMP9 through Src/Akt/NF-kappaB pathway. Cancer Biol Ther. 2018;20(4):435-43. DOI: 10.1080/15384047.2018.1529117.10.1080/15384047.2018.1529117642250330359168 Search in Google Scholar

67. Krishnamoorthy GP, Davidson NR, Leach SD, Zhao Z, Lowe SW, Lee G, et al. EIF1AX and RAS mutations cooperate to drive thyroid tumorigenesis through ATF4 and c-MYC. Cancer Discovery. 2019;9(2):264-81. DOI: 10.1158/2159-8290.CD-18-0606.10.1158/2159-8290.CD-18-0606637345130305285 Search in Google Scholar

68. Lavoie H, Sahmi M, Maisonneuve P, Marullo SA, Thevakumaran N, Jin T, et al. MEK drives BRAF activation through allosteric control of KSR proteins. Nature. 2018;554:549-53.10.1038/nature25478643312029433126 Search in Google Scholar

69. Song M, Finley SD. Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors. BMC Syst Biol. 2018;12:145. DOI: 10.1186/s12918-018-0668-5.10.1186/s12918-018-0668-5 Search in Google Scholar

70. Vladimirova LY. The use of MEK inhibitors in oncology: results and prospects. Success of Modern Natural Science. 2015;3:18-30. Search in Google Scholar

71. Rubinfeld H, Seger R. The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol. 2005;31(2):15174. DOI: 10.1385/MB:31:2:151.10.1385/MB:31:2:151 Search in Google Scholar

72. Tang Q, Wu J, Zheng F, Hann SS, Chen YQ. Emodin increases expression of insulinlike growth factor binding protein 1 through activation of MEK/ERK/AMPKα and interaction of PPARγ and Sp1 in lung cancer. Cell Physiol Biochem. 2017;41(1):33957. DOI: 10.1159/000456281.10.1159/00045628128214826 Search in Google Scholar

73. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108-13. DOI: 10.1126/science.1145720.10.1126/science.114572017932254 Search in Google Scholar

74. Yang S, Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett. 2017;13(3):10417. DOI: 10.3892/ol.2017.5557.10.3892/ol.2017.5557540324428454211 Search in Google Scholar

75. Mandal R, Becker S, Strebhardt K. Stamping out RAF and MEK1/2 to inhibit the ERK1/2 pathway: an emerging threat to anticancer therapy. Oncogene. 2016;35(20):2547-61. DOI: 10.1038/onc.2015.329.10.1038/onc.2015.32926364606 Search in Google Scholar

76. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16-27. DOI: 10.1111/j.1742-4658.2010.07919.x10.1111/j.1742-4658.2010.07919.x21087457 Search in Google Scholar

77. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, et al. A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers (Basel). 2019;11(10):1618. DOI: 10.3390/cancers11101618.10.3390/cancers11101618682704731652660 Search in Google Scholar

78. Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer. 2015;15(10):577-92. DOI: 10.1038/nrc4000.10.1038/nrc400026399658 Search in Google Scholar

79. Krishna Priya S, Nagare RP, Sneha VS, Sidhanth C, Bindhya S, Manasa P, Ganesan TS. Tumour angiogenesis-Origin of blood vessels. Int J Cancer. 2016;139(4):729-35. DOI: 10.1002/ijc.30067.10.1002/ijc.3006726934471 Search in Google Scholar

80. Bian CX, Shi Z, Meng Q, Jiang Y, Liu LZ, Jiang BH. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1alpha expression. Biochem Biophys Res Commun. 2010;398(3):395-9. DOI: 10.1016/j.bbrc.2010.06.080.10.1016/j.bbrc.2010.06.080292806120599538 Search in Google Scholar

eISSN:
2393-3356
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other, Surgery, Otorhinolaryngology, Speech, Voice and Paediatric Hearing Disorders, Oromaxillofacial Surgery