Otwarty dostęp

Investigation of the association of the RAN (rs14035) and XPO5 (rs11077) polymorphisms with venous thromboembolism


Zacytuj

ALBERTSEN IE., KONSTANTINIDES SV., PIAZZA G., GOLDHABER SZ., LARSEN TB., SøGAARD M, et al. Risk of Recurrent Venous Thromboembolism in Selected Subgroups of Men: A Danish Nationwide Cohort Study. TH Open. 2022;6(4):e378–e86. Search in Google Scholar

SILVA CRUZ M., RODRIGUES SANTOS L., ESTEVES RODRIGUES T., MANUEL PEREIRA DA SILVA F., FERRAZ MOREIRA V. Venous Thrombosis Has a Constellation of Different Risk Factors: A Case Report and State-of-the-Art Review. Cureus. 2022;14(10):e30766. Search in Google Scholar

BLITZER RR., EISENSTEIN S. Venous Thromboembolism and Pulmonary Embolism: Strategies for Prevention and Management. Surg Clin North Am. 2021;101(5):925–38. Search in Google Scholar

ESSIEN EO., RALI P., MATHAI SC. Pulmonary Embolism. Med Clin North Am. 2019;103(3):549–64. Search in Google Scholar

HEIT JA. Epidemiology of venous thromboembolism. Nat Rev Cardiol. 2015;12(8):464–74. Search in Google Scholar

KHAN F., TRITSCHLER T., KAHN SR., RODGER MA. Venous thromboembolism. Lancet. 2021;398(10294):64–77. Search in Google Scholar

YAMASHITA Y., MORIMOTO T., KIMURA T. Venous thromboembolism: Recent advancement and future perspective. J Cardiol. 2022;79(1):79–89. Search in Google Scholar

SCHULMAN S., AGENO W., KONSTANTINIDES SV. Venous thromboembolism: Past, present and future. Thromb Haemost. 2017;117(7):1219–29. Search in Google Scholar

RAHMANI J., HAGHIGHIAN ROUDSARI A., BAWADI H., THOMPSON J., KHALOOEI FARD R., CLARK C, et al. Relationship between body mass index, risk of venous thromboembolism and pulmonary embolism: A systematic review and dose-response meta-analysis of cohort studies among four million participants. Thromb Res. 2020;192:64–72. Search in Google Scholar

KONDO T., NAKANO Y., ADACHI S., MUROHARA T. Effects of Tobacco Smoking on Cardiovascular Disease. Circ J. 2019;83(10):1980–5. Search in Google Scholar

KIM J., KRAFT P., HAGAN KA., HARRINGTON LB., LINDSTROEM S., KABRHEL C. Interaction of a genetic risk score with physical activity, physical inactivity, and body mass index in relation to venous thromboembolism risk. Genet Epidemiol. 2018;42(4):354–65. Search in Google Scholar

NAZARZADEH M., BIDEL Z., MOHSENI H., CANOY D., PINHO-GOMES AC., HASSAINE A, et al. Blood pressure and risk of venous thromboembolism: a cohort analysis of 5.5 million UK adults and Mendelian randomization studies. Cardiovasc Res. 2022. Search in Google Scholar

HAU A., WEGENER E., IGNJATOVIC V., REVEL-VILK S., MONAGLE P. Family history of venous thromboembolism in the paediatric population: The need for a standardized definition. Thromb Res. 2019;173:91–5. Search in Google Scholar

GADDH M., ROSOVSKY RP. Venous Thromboembolism: Genetics and Thrombophilias. Semin Respir Crit Care Med. 2021;42(2):271–83. Search in Google Scholar

BAYLIS RA., SMITH NL., KLARIN D., FUKAYA E. Epidemiology and Genetics of Venous Thromboembolism and Chronic Venous Disease. Circ Res. 2021;128(12):1988–2002. Search in Google Scholar

ZöLLER B. Genetics of venous thromboembolism revised. Blood. 2019;134(19):1568–70. Search in Google Scholar

TREGOUET DA., MORANGE PE. What is currently known about the genetics of venous thromboembolism at the dawn of next generation sequencing technologies. Br J Haematol. 2018;180(3):335–45. Search in Google Scholar

LEVKOVA M., HACHMERIYAN M., STOYANOVA M., MITEVA V., ANGELOVA L. Comparison between thrombophilic gene polymorphisms among high risk patients. Rom J Intern Med. 2020;58(1):20–6. Search in Google Scholar

ELGHEZNAWY A., FLEMING I. Platelet-Enriched MicroRNAs and Cardiovascular Homeostasis. Antioxid Redox Signal. 2018;29(9):902–21. Search in Google Scholar

TERUEL-MONTOYA R., ROSENDAAL FR., MARTíNEZ C. MicroRNAs in hemostasis. J Thromb Haemost. 2015;13(2):170–81. Search in Google Scholar

TAFRIHI M., HASHEMINASAB E. MiRNAs: Biology, Biogenesis, their Web-based Tools, and Databases. Microrna. 2019;8(1):4–27. Search in Google Scholar

SAHU A., JHA PK., PRABHAKAR A., SINGH HD., GUPTA N., CHATTERJEE T, et al. MicroRNA-145 Impedes Thrombus Formation via Targeting Tissue Factor in Venous Thrombosis. EBioMedicine. 2017;26:175–86. Search in Google Scholar

WICIK Z., CZAJKA P., EYILETEN C., FITAS A., WOLSKA M., JAKUBIK D, et al. The role of miRNAs in regulation of platelet activity and related diseases – a bioinformatic analysis. Platelets. 2022;33(7):1052–64. Search in Google Scholar

KIM JO., BAE J., KIM J., OH SH., AN HJ., HAN IB, et al. Association of MicroRNA Biogenesis Genes Polymorphisms with Ischemic Stroke Susceptibility and Post-Stroke Mortality. J Stroke. 2018;20(1):110–21. Search in Google Scholar

HUANG X., AN Y., LI X., WANG D., TAN H., LEI J. Genetic variants in DICER1, DROSHA, RAN, and XPO5 genes and risk of pregnancy-induced hypertension. Pregnancy Hypertens. 2019;16:161–6. Search in Google Scholar

YI R., QIN Y., MACARA IG., CULLEN BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6. Search in Google Scholar

SHAO Y., SHEN Y., ZHAO L., GUO X., NIU C., LIU F. Association of microRNA biosynthesis genes XPO5 and RAN polymorphisms with cancer susceptibility: Bayesian hierarchical meta-analysis. J Cancer. 2020;11(8):2181–91. Search in Google Scholar

CHO SH., KO JJ., KIM JO., JEON YJ., YOO JK., OH J, et al. 3'-UTR Polymorphisms in the MiRNA Machinery Genes DROSHA, DICER1, RAN, and XPO5 Are Associated with Colorectal Cancer Risk in a Korean Population. PLoS One. 2015;10(7):e0131125. Search in Google Scholar

KIM MN., KIM JO., LEE SM., PARK H., LEE JH., RIM KS, et al. Variation in the Dicer and RAN Genes Are Associated with Survival in Patients with Hepatocellular Carcinoma. PLoS One. 2016;11(9):e0162279. Search in Google Scholar

MOAZENI-ROODI A., TAHERI M., HASHEMI M. Association between XPO5 rs11077 polymorphism and cancer susceptibility: a meta-analysis of 7284 cases and 8511 controls. Exp Oncol. 2019;41(4):346–52. Search in Google Scholar

DING C., LI C., WANG H., LI B., GUO Z. A miR-SNP of the XPO5 gene is associated with advanced non-small-cell lung cancer. Onco Targets Ther. 2013;6:877–81. Search in Google Scholar

RAH H., JEON YJ., LEE BE., KIM JO., SHIM SH., LEE WS, et al. Association of polymorphisms in microRNA machinery genes (DROSHA, DICER1, RAN, and XPO5) with risk of idiopathic primary ovarian insufficiency in Korean women. Menopause. 2013;20(10):1067–73. Search in Google Scholar

KO EJ., KIM EJ., KIM JO., SUNG JH., PARK HS., RYU CS, et al. Analysis of the Association Between MicroRNA Biogenesis Gene Polymorphisms and Venous Thromboembolism in Koreans. Int J Mol Sci. 2019;20(15). Search in Google Scholar

OTT CA., LINCK L., KREMMER E., MEISTER G., BOSSERHOFF AK. Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells. Oncotarget. 2016;7(38):62292–304. Search in Google Scholar

HU B., WANG QY., TANG L., HU Y. Association of thrombomodulin c.1418C >T polymorphism and venous thromboembolism. Gene. 2017;628:56-62. Search in Google Scholar

LIMPERGER V., KENET G., KIESAU B., KöTHER M., SCHMEISER M., LANGER F, et al. Role of prothrombin 19911 A>G polymorphism, blood group and male gender in patients with venous thromboembolism: Results of a German cohort study. J Thromb Thrombolysis. 2021;51(2):494–501. Search in Google Scholar

KUMARI B., PRABHAKAR A., SAHU A., CHATTERJEE T., TYAGI T., GUPTA N, et al. Endothelin-1 Gene Polymorphism and Its Level Predict the Risk of Venous Thromboembolism in Male Indian Population. Clin Appl Thromb Hemost. 2017;23(5):429–37. Search in Google Scholar

AHMAD A., MEMON AA., SUNDQUIST J., SVENSSON PJ., ZöLLER B., SUNDQUIST K. Fat mass and obesity-associated gene rs9939609 polymorphism is a potential biomarker of recurrent venous thromboembolism in male but not in female patients. Gene. 2018;647:136–42. Search in Google Scholar

BARáTH B., BOGáTI R., MIKLóS T., KáLLAI J., MEZEI ZA., BERECZKY Z, et al. Effect of α2-plasmin inhibitor heterogeneity on the risk of venous thromboembolism. Thromb Res. 2021;203:110–6. Search in Google Scholar

ALOMARI MA., KEEWAN EF., QHATAN R., AMER A., KHABOUR OF., MAAYAH MF, et al. Blood pressure and circulatory relationships with physical activity level in young normotensive individuals: IPAQ validity and reliability considerations. Clin Exp Hypertens. 2011;33(5):345–53. Search in Google Scholar

ASHKAN SA., ZAKER BOSTANABAD S., MIRZAAHMADI S. The study of Relationship between miRNA Machinery Genes polymorphism (DROSHA & EXPORTIN5) and recurrent spontaneous abortion in city of tehran. New Cellular and Molecular Biotechnology Journal. 2018;8(30):45–52. Search in Google Scholar

SCHENK JF., STEPHAN B., ZEWINGER S., SPEER T., PINDUR G. Comparison of the plasminogen activator inhibitor-1 4G/5G gene polymorphism in females with venous thromboembolism during pregnancy or spontaneous abortion. Clin Hemorheol Microcirc. 2008;39(1–4):329–32. Search in Google Scholar

AL-SHAHERI F., KHABOUR OF. Associations between rs2241766 and rs3774261 polymorphisms in ADIPOQ gene and atopic dermatitis. Acta Biochim Pol. 2022;69(3):637–77. Search in Google Scholar

DOOLITTLE RF. Step-by-step evolution of vertebrate blood coagulation. Cold Spring Harb Symp Quant Biol. 2009;74:35–40. Search in Google Scholar

CHEN X., CAO J., GE Z., XIA Z. Correlation and integration of circulating miRNA and peripheral whole blood gene expression profiles in patients with venous thromboembolism. Bioengineered. 2021;12(1):2352–63. Search in Google Scholar

SU Y., LI Q., ZHENG Z., WEI X., HOU P. Identification of genes, pathways and transcription factor-miRNA-target gene networks and experimental verification in venous thromboembolism. Sci Rep. 2021;11(1):16352. Search in Google Scholar

YAPIJAKIS C. The Role of MicroRNAs in Thrombosis. Adv Exp Med Biol. 2021;1339:409–14. Search in Google Scholar

WOJCIECHOWSKA A., BRANIEWSKA A., KOZAR-KAMIŃSKA K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med. 2017;26(5):865–74. Search in Google Scholar

BARWARI T., JOSHI A., MAYR M. MicroRNAs in Cardiovascular Disease. J Am Coll Cardiol. 2016;68(23):2577–84. Search in Google Scholar

MORELLI VM., BRæKKAN SK., HANSEN JB. Role of microRNAs in Venous Thromboembolism. Int J Mol Sci. 2020;21(7). Search in Google Scholar

ROSSETTI P., GOLDONI M., PENGO V., VESCOVINI R., MOZZONI P., TASSONI MI, et al. MiRNA 126 as a New Predictor Biomarker in Venous Thromboembolism of Persistent Residual Vein Obstruction: A Review of the Literature Plus a Pilot Study. Semin Thromb Hemost. 2021;47(8):982–91. Search in Google Scholar

TANG L., HU Y. Ethnic diversity in the genetics of venous thromboembolism. Thromb Haemost. 2015;114(5):901–9. Search in Google Scholar

EIKELBOOM JW., WEITZ JI. Importance of family history as a risk factor for venous thromboembolism. Circulation. 2011;124(9):996–7. Search in Google Scholar

ZöLLER B., OHLSSON H., SUNDQUIST J., SUNDQUIST K. Family history of venous thromboembolism (VTE) and risk of recurrent hospitalization for VTE: a nationwide family study in Sweden. J Thromb Haemost. 2014;12(3):306–12. Search in Google Scholar

YANG G., DE STAERCKE C., HOOPER WC. The effects of obesity on venous thromboembolism: A review. Open J Prev Med. 2012;2(4):499–509. Search in Google Scholar

EICHINGER S., HRON G., BIALONCZYK C., HIRSCHL M., MINAR E., WAGNER O, et al. Overweight, obesity, and the risk of recurrent venous thromboembolism. Arch Intern Med. 2008;168(15):1678–83. Search in Google Scholar

SEVERINSEN MT., KRISTENSEN SR., JOHNSEN SP., DETHLEFSEN C., TJøNNELAND A., OVERVAD K. Smoking and venous thromboembolism: a Danish follow-up study. J Thromb Haemost. 2009;7(8):1297–303. Search in Google Scholar

CHENG YJ., LIU ZH., YAO FJ., ZENG WT., ZHENG DD., DONG YG, et al. Current and former smoking and risk for venous thromboembolism: a systematic review and meta-analysis. PLoS Med. 2013;10(9):e1001515. Search in Google Scholar

FARIA CDA S., BOTELHO C., SILVA RM., FERREIRA MG. Smoking and abdominal fat in blood donors. J Bras Pneumol. 2012;38(3):356–63. Search in Google Scholar

WU CY., HU HY., CHOU YJ., HUANG N., CHOU YC., LI CP. High Blood Pressure and All-Cause and Cardiovascular Disease Mortalities in Community-Dwelling Older Adults. Medicine (Baltimore). 2015;94(47):e2160. Search in Google Scholar

CLAYMAN MA., CLAYMAN ES., SEAGLE BM., SADOVE R. The pathophysiology of venous thromboembolism: implications with compression garments. Ann Plast Surg. 2009;62(5):468–72. Search in Google Scholar

KHADER Y., BATIEHA A., JADDOU H., RAWASHDEH SI., EL-KHATEEB M., HYASSAT D, et al. Hypertension in Jordan: Prevalence, Awareness, Control, and Its Associated Factors. Int J Hypertens. 2019;2019:3210617. Search in Google Scholar

ZHAO G., YU D., WEISS MJ. MicroRNAs in erythropoiesis. Curr Opin Hematol. 2010;17(3):155–62. Search in Google Scholar

SOUZA OF., POPI AF. Role of microRNAs in B-Cell Compartment: Development, Proliferation and Hematological Diseases. Biomedicines. 2022;10(8). Search in Google Scholar

eISSN:
2501-062X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Internal Medicine, other, Cardiology, Gastroenterology, Rheumatology