Otwarty dostęp

Short-term prediction of UT1-UTC and LOD via Dynamic Mode Decomposition and combination of least-squares and vector autoregressive model


Zacytuj

Bizouard, C., Lambert, S., Gattano, C., Becker, O., and Richard, J.-Y. (2018). The IERS EOP 14C04 solution for earth orientation parameters consistent with ITRF 2014. Journal of Geodesy, 93(5):621–633, doi:10.1007/s00190-018-1186-3. Search in Google Scholar

Dick, W. R. and Thaller, D. (2020). IERS Annual Report 2018. Technical report, International Earth Rotation and Reference Systems Service, Central Bureau. Search in Google Scholar

Dill, R., Dobslaw, H., and Thomas, M. (2018). Improved 90-day Earth orientation predictions from angular momentum forecasts of atmosphere, ocean, and terrestrial hydrosphere. Journal of Geodesy, 93(3):287–295, doi:10.1007/s00190-018-1158-7. Search in Google Scholar

Dobslaw, H. and Dill, R. (2018). Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics. Advances in Space Research, 61(4):1047–1054, doi:10.1016/j.asr.2017.11.044. Search in Google Scholar

Gambis, D. and Luzum, B. (2011). Earth rotation monitoring, UT1 determination and prediction. Metrologia, 48(4):S165–S170, doi:10.1088/0026-1394/48/4/s06. Search in Google Scholar

Gross, R. S., Eubanks, T., Steppe, J., Freedman, A., Dickey, J., and Runge, T. (1998). A Kalman-filter-based approach to combining independent Earth-orientation series. Journal of Geodesy, 72:215–235, doi:10.1007/s001900050162. Search in Google Scholar

Gross, R. S., Fukumori, I., Menemenlis, D., and Gegout, P. (2004). Atmospheric and oceanic excitation of length-of-day variations during 1980–2000. Journal of Geophysical Research: Solid Earth, 109(B1), doi:10.1029/2003jb002432. Search in Google Scholar

Guessoum, S., Belda, S., Ferrandiz, J. M., Modiri, S., Raut, S., Dhar, S., Heinkelmann, R., and Schuh, H. (2022). The short-term prediction of Length of Day using 1D convolutional neural networks (1D CNN). Sensors, 22(23):9517, doi:10.3390/s22239517. Search in Google Scholar

Holton, J. R. and Dmowska, R. (1989). El Niño, La Niña, and the southern oscillation. Academic press, Cambridge, MA, USA. Search in Google Scholar

Höpfner, J. (1998). Seasonal variations in length of day and atmospheric angular momentum. Geophysical Journal International, 135(2):407–437, doi:10.1046/j.1365-246X.1998.00648.x. Search in Google Scholar

Kalarus, M., Schuh, H., Kosek, W., Akyilmaz, O., Bizouard, C., Gambis, D., Gross, R., Jovanović, B., Kumakshev, S., Kutterer, H., Mendes Cerveira, P. J., Pasynok, S., and Zotov, L. (2010). Achievements of the Earth orientation parameters prediction comparison campaign. Journal of Geodesy, 84(10):587–596, doi:10.1007/s00190-010-0387-1. Search in Google Scholar

Kiani Shahvandi, M., Schartner, M., and Soja, B. (2022). Neural ODE differential learning and its application in polar motion prediction. Journal of Geophysical Research: Solid Earth, 127(11), doi:10.1029/2022jb024775. Search in Google Scholar

Kur, T., Dobslaw, H., Śliwińska, J., Nastula, J., Wińska, M., and Partyka, A. (2022). Evaluation of selected short-term predictions of UT1-UTC and LOD collected in the second earth orientation parameters prediction comparison campaign. Earth, Planets and Space, 74(1), doi:10.1186/s40623-022-01753-9. Search in Google Scholar

Lei, Y., Cai, H., and Zhao, D. (2017). Improvement of the prediction accuracy of polar motion using empirical mode decomposition. Geodesy and Geodynamics, 8(2):141–146, doi:10.1016/j.geog.2016.09.007. Search in Google Scholar

Liao, D., Wang, Q., Zhou, Y., Liao, X., and Huang, C. (2012). Long-term prediction of the Earth Orientation Parameters by the artificial neural network technique. Journal of Geodynamics, 62:87–92, doi:10.1016/j.jog.2011.12.004. Search in Google Scholar

Michalczak, M. and Ligas, M. (2021). Kriging-based prediction of the Earth’s pole coordinates. Journal of Applied Geodesy, 15(3):233–241, doi:10.1515/jag-2021-0007. Search in Google Scholar

Michalczak, M. and Ligas, M. (2022). The (ultra) short term prediction of length-of-day using kriging. Advances in Space Research, 70(3):610–620, doi:10.1016/j.asr.2022.05.007. Search in Google Scholar

Modiri, S., Belda, S., Hoseini, M., Heinkelmann, R., Ferrándiz, J. M., and Schuh, H. (2020). A new hybrid method to improve the ultra-short-term prediction of LOD. Journal of Geodesy, 94(2), doi:10.1007/s00190-020-01354-y. Search in Google Scholar

Nastula, J., Chin, T. M., Gross, R., Śliwińska, J., and Wińska, M. (2020). Smoothing and predicting celestial pole offsets using a Kalman filter and smoother. Journal of Geodesy, 94(3), doi:10.1007/s00190-020-01349-9. Search in Google Scholar

Niedzielski, T. and Kosek, W. (2011). Prediction Analysis of UT1-UTC Time Series by Combination of the Least-Squares and Multivariate Autoregressive Method, pages 153–157. Springer Berlin Heidelberg, doi:10.1007/978-3-642-22078-4_23. Search in Google Scholar

Okhotnikov, G. and Golyandina, N. (2019). EOP time series prediction using singular spectrum analysis. In Corpetti, T., Ienco, D., and Interdonato, R., editors, Proceedings of MACLEAN: MAChine learning for Earth observation workshop, RWTH Aahen University, CEUR Workshop Proceedings. Search in Google Scholar

Petit, G. and Luzum, B. (2010). Iers conventions. Technical report, IERS Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie Frankfurt am Main, Germany. Search in Google Scholar

Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656:5–28, doi:10.1017/s0022112010001217. Search in Google Scholar

Schuh, H., Ulrich, M., Egger, D., Müller, J., and Schwegmann, W. (2002). Prediction of Earth orientation parameters by artificial neural networks. Journal of Geodesy, 76(5):247–258, doi:10.1007/s00190-001-0242-5. Search in Google Scholar

Soffel, M. (2013). Space-Time Reference Systems. SpringerLink. Springer, Berlin. Description based upon print version of record. Search in Google Scholar

Tirunagari, S., Kouchaki, S., Poh, N., Bober, M., and Windridge, D. (2017). Dynamic mode decomposition for univariate time series: analysing trends and forecasting. hal-01463744f. Search in Google Scholar

Tu, J. H., Rowley, W. C., Luchtenburg, D. M., Brunton, S. L., and Kutz, J. N. (2014). On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):391–421, doi:10.3934/jcd.2014.1.391. Search in Google Scholar

Xu, X., Zhou, Y., and Liao, X. (2012). Short-term earth orientation parameters predictions by combination of the least-squares, AR model and Kalman filter. Journal of Geodynamics, 62:83–86, doi:10.1016/j.jog.2011.12.001. Search in Google Scholar

Xu, X., Zhou, Y., and XU, C. (2022a). Earth rotation parameters prediction and climate change indicators in it. Artificial Satellites, 57(s1):262–273, doi:10.2478/arsa-2022-0023. Search in Google Scholar

Xu, X.-Q., Zhou, Y.-H., Duan, P.-S., Fang, M., Kong, Z.-Y., Xu, C.- C., and An, X.-R. (2022b). Contributions of oceanic and continental AAM to interannual variation in ∆LOD with the detection of 2020–2021 La Nina event. Journal of Geodesy, 96(6), doi:10.1007/s00190-022-01632-x. Search in Google Scholar

Śliwińska, J., Kur, T., Wińska, M., Nastula, J., Dobslaw, H., and Partyka, A. (2022). Second Earth Orientation Parameters prediction comparison campaign (2nd EOP PCC): Overview. Artificial Satellites, 57(s1):237–253, doi:10.2478/arsa-2022-0021. Search in Google Scholar

eISSN:
2391-8152
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Computer Sciences, other, Geosciences, Geodesy, Cartography and Photogrammetry