[
Algaba, E., Fragnelli, V., & Sánchez-Soriano, J. (Eds.). (2019). Handbook of the Shapley value. CRC Press. https://doi.org/10.1201/9781351241410
]Search in Google Scholar
[
Alonso, W. (1964). Location and land use: Toward a general theory of land rent. Harvard University Press., https://doi.org/10.4159/harvard.9780674730854
]Search in Google Scholar
[
Angrist, J. D., & Pischke, J. S. (2010). The credibility revolution in empirical economics: How better research design is taking the con out of econometrics. The Journal of Economic Perspectives, 24(2), 3–30. https://doi.org/10.1257/jep.24.2.3
]Search in Google Scholar
[
Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass appraisal of residential apartments: An application of Random Forest for valuation and a CART-based approach for model diagnostics. Expert Systems with Applications, 39(2), 1772–1778. https://doi.org/10.1016/j.eswa.2011.08.077
]Search in Google Scholar
[
Arribas, I., García, F., Guijarro, F., Oliver, J., & Tamošiūnienė, R. (2016). Mass appraisal of residential real estate using multilevel modelling. International Journal of Strategic Property Management, 20(1), 77–87. https://doi.org/10.3846/1648715X.2015.1134702
]Search in Google Scholar
[
Basu, S., & Thibodeau, T. G. (1998). Analysis of spatial autocorrelation in house prices. The Journal of Real Estate Finance and Economics, 17, 61–85. https://doi.org/10.1023/A:1007703229507
]Search in Google Scholar
[
Bogin, A. N., & Shui, J. (2020). Appraisal accuracy and automated valuation models in rural areas. The Journal of Real Estate Finance and Economics, 60(1-2), 40–52. https://doi.org/10.1007/s11146-019-09712-0 https://doi.org/10.1007/s11146-019-09727-7.
]Search in Google Scholar
[
Borgoni, R., Michelangeli, A., & Pontarollo, N. (2018). The value of culture to urban housing markets. Regional Studies, 52(12), 1672–1683. https://doi.org/10.1080/00343404.2018.1444271
]Search in Google Scholar
[
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324
]Search in Google Scholar
[
Cellmer, R. (2013). Use of spatial autocorrelation to build regression models of transaction prices. Real Estate Management and Valuation, 21(4), 65–74. https://doi.org/10.2478/remav-2013-0038
]Search in Google Scholar
[
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). https://doi.org/10.1145/2939672.2939785 https://doi.org/10.5194/acp-20-8063-2020.
]Search in Google Scholar
[
Deppner, J., & Cajias, M. (2022). Accounting for spatial autocorrelation in algorithm-driven hedonic models: A spatial cross-validation approach. The Journal of Real Estate Finance and Economics, 68, 235–273. https://doi.org/10.1007/s11146-022-09915-y
]Search in Google Scholar
[
Deppner, J., von Ahlefeldt-Dehn, B., Beracha, E., & Schaefers, W. (2023). Boosting the accuracy of commercial real estate appraisals: An interpretable machine learning approach. The Journal of Real Estate Finance and Economics, 1–38. https://doi.org/10.1007/s11146-023-09944-1 PMID:38625136
]Search in Google Scholar
[
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
]Search in Google Scholar
[
Gilliland, M. (ed.). (2010). The Business forecasting deal: exposing myths, eliminating bad practices, providing practical solutions. John Wiley & Sons., https://doi.org/10.1002/9781119199885
]Search in Google Scholar
[
Holzinger, A., Saranti, A., Molnar, C., Biecek, P., & Samek, W. (2022). Explainable AI methods – A brief overview. In A. Holzinger, R. Goebel, R. Fond, T. Moon, K. R. Müller, & W. Samek (Eds.), xxAI – Beyond explainable AI (pp. 13–38). Springer., https://doi.org/10.1007/978-3-031-04083-2_2
]Search in Google Scholar
[
Hong, J., Choi, H., & Kim, W. S. (2020). A house price valuation based on the random forest approach: The mass appraisal of residential property in South Korea. International Journal of Strategic Property Management, 24(3), 140–152. https://doi.org/10.3846/ijspm.2020.11544
]Search in Google Scholar
[
Hu, L., He, S., Han, Z., Xiao, H., Su, S., Weng, M., & Cai, Z. (2019). Monitoring housing rental prices based on social media: An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Policy, 82, 657–673. https://doi.org/10.1016/j.landusepol.2018.12.030
]Search in Google Scholar
[
Kauko, T. (2006). What makes a location attractive for the housing consumer? Preliminary findings from metropolitan Helsinki and Randstad Holland using the analytical hierarchy process. Journal of Housing and the Built Environment, 21, 159–176. https://doi.org/10.1007/s10901-006-9040-y
]Search in Google Scholar
[
Kok, N., Koponen, E. L., & Martínez-Barbosa, C. A. (2017). Big data in real estate? From manual appraisal to automated valuation. Journal of Portfolio Management, 43(6), 202–211. https://doi.org/10.3905/jpm.2017.43.6.202
]Search in Google Scholar
[
Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74(2), 132–157. https://doi.org/10.1086/259131
]Search in Google Scholar
[
Lewis, C. D. (1982). Industrial and business forecasting methods. Butterworths.
]Search in Google Scholar
[
Li, Z. (2022). Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Computers, Environment and Urban Systems, 96, 101845. https://doi.org/10.1016/j.compenvurbsys.2022.101845
]Search in Google Scholar
[
Lorenz, F., Willwersch, J., Cajias, M., & Fuerst, F. (2023). Interpretable machine learning for real estate market analysis. Real Estate Economics, 51(5), 1178–1208. https://doi.org/10.1111/1540-6229.12397
]Search in Google Scholar
[
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems, 30. ISBN: 978-1-5108-6096-4.
]Search in Google Scholar
[
Mayer, M., Bourassa, S. C., Hoesli, M., & Scognamiglio, D. (2019). Estimation and updating methods for hedonic valuation. Journal of European Real Estate Research, 12(1), 134–150. https://doi.org/10.1108/JERER-08-2018-0035
]Search in Google Scholar
[
Molnar, C. (2020). Interpretable Machine learning. A guide for making black box models explainable. Lean Publishing.
]Search in Google Scholar
[
Montero, J. M., & Fernández-Avilés, G. (2014). Hedonic Price Model. In A. C. Michalos (Ed.), Encyclopedia of quality of life and wellbeing research (pp. 2834–2837). Springer., https://doi.org/10.1007/978-94-007-0753-5_1279
]Search in Google Scholar
[
Mora-Garcia, R. T., Cespedes-Lopez, M. F., & Perez-Sanchez, V. R. (2022). Housing price prediction using machine learning algorithms in COVID-19 times. Land (Basel), 11(11), 2100. https://doi.org/10.3390/land11112100
]Search in Google Scholar
[
MSCI. (2022). Private real estate: Valuation and sale price comparison 2021.
]Search in Google Scholar
[
NBP. (2022). Raport o sytuacji na rynku nieruchomości mieszkaniowych i komercyjnych w Polsce w 2021 r. [Report on the situation in the residential and commercial real estate market in Poland in 2021].
]Search in Google Scholar
[
Niu, F., & Liu, W. (2017). Modeling urban housing price: The perspective of household activity demand. Journal of Geographical Sciences, 27, 619–630. https://doi.org/10.1007/s11442-017-1396-2
]Search in Google Scholar
[
Osland, L. (2010). An application of spatial econometrics in relation to hedonic house price modeling. Journal of Real Estate Research, 32(3), 289–320. https://doi.org/10.1080/10835547.2010.12091282
]Search in Google Scholar
[
Pace, R. K., & Hayunga, D. (2020). Examining the information content of residuals from hedonic and spatial models using trees and forests. The Journal of Real Estate Finance and Economics, 60, 170–180. https://doi.org/10.1007/s11146-019-09724-w
]Search in Google Scholar
[
Przekop, D. (2022). Artificial neural networks vs spatial regression approach in property valuation. Central European Journal of Economic Modelling and Econometrics, 14, 199–223. https://doi.org/10.24425/cejeme.2022.142630
]Search in Google Scholar
[
Rico-Juan, J. R., & Taltavull de La Paz, P. T. (2021). Machine learning with explainability or spatial hedonics tools? An analysis of the asking prices in the housing market in Alicante, Spain. Expert Systems with Applications, 171, 114590. https://doi.org/10.1016/j.eswa.2021.114590
]Search in Google Scholar
[
Rosen, S. (1974). Hedonic Prices and implicit markets: Product differentiation in pure competition. Journal of Political Economy, 82(1), 34–55. https://doi.org/10.1086/260169
]Search in Google Scholar
[
Saha, A., Basu, S., & Datta, A. (2023). Random forests for spatially dependent data. Journal of the American Statistical Association, 118(541), 665–683. https://doi.org/10.1080/01621459.2021.1950003
]Search in Google Scholar
[
Sevgen, S. C., & Tanrivermiş, Y. (2024). Comparison of machine learning algorithms for mass appraisal of real estate data. Real Estate Management and Valuation, 32(2), 100–111. https://doi.org/10.2478/remav-2024-0019
]Search in Google Scholar
[
Shapley, L. (1953). 17. A Value for n-Person Games. In H. Kuhn & A. Tucker (Eds.), Contributions to the theory of games (Vol. AM-28, pp. 307–318). Princeton University Press., https://doi.org/10.1515/9781400881970-018
]Search in Google Scholar
[
Steurer, M., Hill, R. J., & Pfeifer, N. (2021). Metrics for evaluating the performance of machine learning based automated valuation models. Journal of Property Research, 38(2), 99–129. https://doi.org/10.1080/09599916.2020.1858937
]Search in Google Scholar
[
Straszhem, M. (1987). The theory of urban residential location. In Handbook of Regional and Urban Economics (Vol. 2, pp. 717–757). Elsevier., https://doi.org/10.1016/S1574-0080(87)80004-4
]Search in Google Scholar
[
Talebi, H., Peeters, L. J., Otto, A., & Tolosana-Delgado, R. (2022). A truly spatial random forests algorithm for geoscience data analysis and modelling. Mathematical Geosciences, 54, 1–22. https://doi.org/10.1007/s11004-021-09946-w
]Search in Google Scholar
[
Statistical Office in Warsaw. (2022). Panorama dzielnic Warszawy w 2021 r. [Panorama of Warsaw districts in 2021].
]Search in Google Scholar
[
Valier, A. (2020). Who performs better? AVMs vs hedonic models. Journal of Property Investment & Finance, 38(3), 213–225. https://doi.org/10.1108/JPIF-12-2019-0157
]Search in Google Scholar
[
Wheaton, W. C. (1977). Income and urban residence: An analysis of consumer demand for location. The American Economic Review, 67(4), 620–631. https://www.jstor.org/stable/1813394
]Search in Google Scholar
[
Wu, Y., Wei, Y. D., & Li, H. (2020). Analyzing spatial heterogeneity of housing prices using large datasets. Applied Spatial Analysis and Policy, 13, 223–256. https://doi.org/10.1007/s12061-019-09301-x
]Search in Google Scholar
[
Yoshida, T., Murakami, D., & Seya, H. (2024). Spatial prediction of apartment rent using regression-based and machine learningbased approaches with a large dataset. The Journal of Real Estate Finance and Economics, 69, 1–28. https://doi.org/10.1007/s11146-022-09929-6
]Search in Google Scholar
[
Public Transport Authority in Warsaw. (2022). Informator statystyczny 2021 [Statistical guide 2021].
]Search in Google Scholar
[
Public Transport Authority in Warsaw. (2022). Informator statystyczny nr XII (333) [Statistical guide no. XII (333)].
]Search in Google Scholar
[
Zyga, J. (2019). Data selection as the basis for better value modelling. Real Estate Management and Valuation, 27(1), 25–34. https://doi.org/10.2478/remav-2019-0003
]Search in Google Scholar