This work is licensed under the Creative Commons Attribution 4.0 International License.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-49. doi: 10.3322/caac.21660SungHFerlayJSiegelRLLaversanneMSoerjomataramIJemalAGlobal Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin2021; 71: 209-49. 10.3322/caac.21660Open DOISearch in Google Scholar
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424. doi: 10.3322/caac.21492BrayFFerlayJSoerjomataramISiegelRLTorreLAJemalA.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin2018; 68: 394-424. 10.3322/caac.21492Open DOISearch in Google Scholar
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024; 74: 229-63. doi: 10.3322/caac.21834BrayFLaversanneMSungHFerlayJSiegelRLSoerjomataramIGlobal cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin2024; 74: 229-63. 10.3322/caac.21834Open DOISearch in Google Scholar
Zadnik V, Gašljević G, Jarm K, Pompe-Kirn V, Strojan P, Zakotnik B, et al. Cancer in Slovenia 2021. Ljubljana: Institute of Oncology Ljubljana, Epidemiology and Cancer Registry, Slovenian Cancer Registry; 2024.ZadnikVGašljevićGJarmKPompe-KirnVStrojanPZakotnikBCancer in Slovenia 2021. Ljubljana: Institute of Oncology Ljubljana, Epidemiology and Cancer Registry, Slovenian Cancer Registry; 2024.Search in Google Scholar
Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, et al. Bladder cancer. Nat Rev Dis Primers 2017; 3: 17022. doi: 10.1038/nrdp.2017.22SanliODobruchJKnowlesMABurgerMAlemozaffarMNielsenMEBladder cancer. Nat Rev Dis Primers2017; 3: 17022. 10.1038/nrdp.2017.22Open DOISearch in Google Scholar
DeGeorge KC, Holt HR, Hodges SC. Bladder cancer: diagnosis and treatment. Am Fam Physician 2017; 96: 507-14. PMID: 29094888DeGeorgeKCHoltHRHodgesSC.Bladder cancer: diagnosis and treatment. Am Fam Physician2017; 96: 507-14. PMID: 29094888Search in Google Scholar
Matulewicz RS, Steinberg GD. Non-muscle-invasive bladder cancer: overview and contemporary treatment landscape of neoadjuvant chemoablative therapies. Rev Urol 2020; 22: 43-51. PMID: 32760227MatulewiczRSSteinbergGD.Non-muscle-invasive bladder cancer: overview and contemporary treatment landscape of neoadjuvant chemoablative therapies. Rev Urol2020; 22: 43-51. PMID: 32760227Search in Google Scholar
Sedmak B. [Malignant tumors of the bladder]. [Slovenian]. Zdrav Vestn 2003; 72(Suppl I): I-27–31.SedmakB.[Malignant tumors of the bladder]. [Slovenian]. Zdrav Vestn2003; 72(Suppl I): 127–31.Search in Google Scholar
Shen Z, Shen T, Wientjes MG, O’Donnell MA, Au JL. Intravesical treatments of bladder cancer: review. Pharm Res 2008; 25: 1500-10. doi: 10.1007/s11095-008-9566-7ShenZShenTWientjesMGO’DonnellMAAuJL.Intravesical treatments of bladder cancer: review. Pharm Res2008; 25: 1500-10. 10.1007/s11095-008-9566-7Open DOISearch in Google Scholar
Lasič E, Višnjar T, Kreft ME. Properties of the urothelium that establish the blood-urine barrier and their implications for drug delivery. Rev Physiol Biochem Pharmacol 2015; 168: 1-29. doi: 10.1007/112_2015_22LasičEVišnjarTKreftME.Properties of the urothelium that establish the blood-urine barrier and their implications for drug delivery. Rev Physiol Biochem Pharmacol2015; 168: 1-29. 10.1007/112_2015_22Open DOISearch in Google Scholar
Lojk J, Bregar VB, Strojan K, Hudoklin S, Veranič P, Pavlin M, et al. Increased endocytosis of magnetic nanoparticles into cancerous urothelial cells versus normal urothelial cells. Histochem Cell Biol 2018; 149: 45-59. doi: 10.1007/s00418-017-1605-1LojkJBregarVBStrojanKHudoklinSVeraničPPavlinMIncreased endocytosis of magnetic nanoparticles into cancerous urothelial cells versus normal urothelial cells. Histochem Cell Biol2018; 149: 45-59. 10.1007/s00418-017-1605-1Open DOISearch in Google Scholar
Richter S, Sridhar SS. New directions for biologic targets in urothelial carcinoma. Mol Cancer Ther 2012; 11: 1226-35. doi: 10.1158/1535-7163. MCT-11-0756RichterSSridharSS.New directions for biologic targets in urothelial carcinoma. Mol Cancer Ther2012; 11: 1226-35. 10.1158/1535-7163. MCT-11-0756Open DOISearch in Google Scholar
Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 2014; 14: 598-610. doi: 10.1038/nrc3792SulzmaierFJJeanCSchlaepferDD.FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer2014; 14: 598-610. 10.1038/nrc3792Open DOISearch in Google Scholar
Zhang Q, Wang H, Wei H, Zhang D. Focal adhesion kinase (FAK) is associated with poor prognosis in urinary bladder carcinoma. Int J Clin Exp Pathol 2018; 11: 831-8. PMID: 31938172ZhangQWangHWeiHZhangD.Focal adhesion kinase (FAK) is associated with poor prognosis in urinary bladder carcinoma. Int J Clin Exp Pathol2018; 11: 831-8. PMID: 31938172Search in Google Scholar
Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim Biophys Acta 2004; 1692: 103-19. doi: 10.1016/j. bbamcr.2004.04.007WozniakMAModzelewskaKKwongLKeelyPJ.Focal adhesion regulation of cell behavior. Biochim Biophys Acta2004; 1692: 103-19. 10.1016/j. bbamcr.2004.04.007Open DOISearch in Google Scholar
Gabarra-Niecko V, Schaller MD, Dunty JM. FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev 2003; 22: 359-74. doi: 10.1023/a:1023725029589Gabarra-NieckoVSchallerMDDuntyJM.FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev2003; 22: 359-74. 10.1023/a:1023725029589Open DOISearch in Google Scholar
Hecker TP, Gladson CL. Focal adhesion kinase in cancer. Front Biosci 2003; 8: s705-14. doi: 10.2741/1115HeckerTPGladsonCL.Focal adhesion kinase in cancer. Front Biosci2003; 8: s705-14. 10.2741/1115Open DOISearch in Google Scholar
Zhao J, Guan JL. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 2009; 28: 35-49. doi: 10.1007/s10555-008-9165-4ZhaoJGuanJL.Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev2009; 28: 35-49. 10.1007/s10555-008-9165-4Open DOISearch in Google Scholar
Tai YL, Chen LC, Shen TL. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int 2015; 2015: 690690. doi: 10.1155/2015/690690TaiYLChenLCShenTL.Emerging roles of focal adhesion kinase in cancer. Biomed Res Int2015; 2015: 690690. 10.1155/2015/690690Open DOISearch in Google Scholar
Višnjar T, Kocbek P, Kreft ME. Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochem Cell Biol 2012; 137: 177-86. doi: 10.1007/s00418-011-0893-0VišnjarTKocbekPKreftME.Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochem Cell Biol2012; 137: 177-86. 10.1007/s00418-011-0893-0Open DOISearch in Google Scholar
Višnjar T, Kreft ME. The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models. Histochem Cell Biol 2015; 143: 95-107. doi: 10.1007/s00418-014-1265-3VišnjarTKreftME.The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models. Histochem Cell Biol2015; 143: 95-107. 10.1007/s00418-014-1265-3Open DOISearch in Google Scholar
Višnjar T, Chesi G, Iacobacci S, Polishchuk E, Resnik N, Robenek H, et al. Uroplakin traffic through the Golgi apparatus induces its fragmentation: new insights from novel in vitro models. Sci Rep 2017; 7: 12842. doi: 10.1038/s41598-017-13103-xVišnjarTChesiGIacobacciSPolishchukEResnikNRobenekHUroplakin traffic through the Golgi apparatus induces its fragmentation: new insights from novel in vitro models. Sci Rep2017; 7: 12842. 10.1038/s41598-017-13103-xOpen DOISearch in Google Scholar
Janev A, Banerjee A, Weidinger A, Dimec J, Leskošek B, Silini AR, et al. Recommendations from the COST action CA17116 (SPRINT) for the standardization of perinatal derivative preparation and in vitro testing. Front Bioeng Biotechnol 2023; 11: 1258753. doi: 10.3389/fbioe.2023.1258753JanevABanerjeeAWeidingerADimecJLeskošekBSiliniARRecommendations from the COST action CA17116 (SPRINT) for the standardization of perinatal derivative preparation and in vitro testing. Front Bioeng Biotechnol2023; 11: 1258753. 10.3389/fbioe.2023.1258753Open DOISearch in Google Scholar
Humphrey PA, Moch H, Cubilla AL, Ulbright TM, Reuter VE. The 2016 WHO classification of tumours of the urinary system and male genital organs-Part B: Prostate and bladder tumours. Eur Urol 2016; 70: 106-19. doi: 10.1016/j. eururo.2016.02.028HumphreyPAMochHCubillaALUlbrightTMReuterVE.The 2016 WHO classification of tumours of the urinary system and male genital organs-Part B: Prostate and bladder tumours. Eur Urol2016; 70: 106-19. 10.1016/j. eururo.2016.02.028Open DOISearch in Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-8. doi: 10.1006/meth.2001.126LivakKJSchmittgenTD.Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods2001; 25: 402-8. 10.1006/meth.2001.126Open DOISearch in Google Scholar
Lee BY, Timpson P, Horvath LG, Daly RJ. FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2015; 146: 132-49. doi: 10.1016/j. pharmthera.2014.10.001LeeBYTimpsonPHorvathLGDalyRJ.FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther2015; 146: 132-49. 10.1016/j. pharmthera.2014.10.001Open DOISearch in Google Scholar
Canel M, Secades P, Rodrigo JP, Cabanillas R, Herrero A, Suarez C, et al. Overexpression of focal adhesion kinase in head and neck squamous cell carcinoma is independent of fak gene copy number. Clin Cancer Res 2006; 12(11 Pt 1): 3272-9. doi: 10.1158/1078-0432.CCR-05-1583CanelMSecadesPRodrigoJPCabanillasRHerreroASuarezCOverexpression of focal adhesion kinase in head and neck squamous cell carcinoma is independent of fak gene copy number. Clin Cancer Res2006; 12(11 Pt 1): 3272-9. 10.1158/1078-0432.CCR-05-1583Open DOISearch in Google Scholar
Beierle EA, Massoll NA, Hartwich J, Kurenova EV, Golubovskaya VM, Cance WG, et al. Focal adhesion kinase expression in human neuroblastoma: immunohistochemical and real-time PCR analyses. Clin Cancer Res 2008; 14: 3299-305. doi: 10.1158/1078-0432.CCR-07-1511BeierleEAMassollNAHartwichJKurenovaEVGolubovskayaVMCanceWGFocal adhesion kinase expression in human neuroblastoma: immunohistochemical and real-time PCR analyses. Clin Cancer Res2008; 14: 3299-305. 10.1158/1078-0432.CCR-07-1511Open DOISearch in Google Scholar
Cance WG, Harris JE, Iacocca MV, Roche E, Yang X, Chang J, et al. Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res 2000; 6: 2417-23. PMID: 10873094CanceWGHarrisJEIacoccaMVRocheEYangXChangJImmunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res2000; 6: 2417-23. PMID: 10873094Search in Google Scholar
Sood AK, Coffin JE, Schneider GB, Fletcher MS, DeYoung BR, Gruman LM, et al. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol 2004; 165: 1087-95. doi: 10.1016/S0002-9440(10)63370-6SoodAKCoffinJESchneiderGBFletcherMSDeYoungBRGrumanLMBiological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol2004; 165: 1087-95. 10.1016/S0002-9440(10)63370-6Open DOISearch in Google Scholar
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91: 691-731. doi: 10.1152/physrev.00004.2010NiessenCMLeckbandDYapAS.Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev2011; 91: 691-731. 10.1152/physrev.00004.2010Open DOISearch in Google Scholar
da Costa JB, Gibb EA, Nykopp TK, Mannas M, Wyatt AW, Black PC. Molecular tumor heterogeneity in muscle invasive bladder cancer: biomarkers, subtypes, and implications for therapy. Urol Oncol 2022; 40: 287-94. doi: 10.1016/j.urolonc.2018.11.015da CostaJBGibbEANykoppTKMannasMWyattAWBlackPC.Molecular tumor heterogeneity in muscle invasive bladder cancer: biomarkers, subtypes, and implications for therapy. Urol Oncol2022; 40: 287-94. 10.1016/j.urolonc.2018.11.015Open DOISearch in Google Scholar
Kamoun A, de Reyniès A, Allory Y, Sjödahl G, Robertson AG, Seiler R, et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur Urology 2020; 77: 420-33. doi: 10.1016/j.eururo.2019.09.006KamounAde ReynièsAAlloryYSjödahlGRobertsonAGSeilerRA consensus molecular classification of muscle-invasive bladder cancer. Eur Urology2020; 77: 420-33. 10.1016/j.eururo.2019.09.006Open DOISearch in Google Scholar
Pouessel D, Neuzillet Y, Mertens LS, van der Heijden MS, de Jong J, Sanders J, et al. Tumor heterogeneity of fibroblast growth factor receptor 3 (FGFR3) mutations in invasive bladder cancer: implications for perioperative anti-FG-FR3 treatment. Ann Oncol 2016; 27: 1311-6. doi: 10.1093/annonc/mdw170PouesselDNeuzilletYMertensLSvan der HeijdenMSde JongJSandersJTumor heterogeneity of fibroblast growth factor receptor 3 (FGFR3) mutations in invasive bladder cancer: implications for perioperative anti-FG-FR3 treatment. Ann Oncol2016; 27: 1311-6. 10.1093/annonc/mdw170Open DOISearch in Google Scholar
Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell 2016; 166: 21-45. doi: 10.1016/j.cell.2016.06.028NietoMAHuangRYJacksonRAThieryJP.EMT: 2016. Cell2016; 166: 21-45. 10.1016/j.cell.2016.06.028Open DOISearch in Google Scholar
Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell 2018; 45: 681-95.e4. doi: 10.1016/j.devcel.2018.05.027AielloNMMaddipatiRNorgardRJBalliDLiJYuanSEMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell2018; 45: 681-95.e4. 10.1016/j.devcel.2018.05.027Open DOISearch in Google Scholar
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol 2019; 29: 212-26. doi: 10.1016/j. tcb.2018.12.001PastushenkoIBlanpainC.EMT transition states during tumor progression and metastasis. Trends Cell Biol2019; 29: 212-26. 10.1016/j. tcb.2018.12.001Open DOISearch in Google Scholar
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178-96. doi: 10.1038/nrm3758LamouilleSXuJDerynckR.Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol2014; 15: 178-96. 10.1038/nrm3758Open DOISearch in Google Scholar
Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol 2017; 11: 755-69. doi: 10.1002/1878-0261.12083JollyMKWareKEGiljaSSomarelliJALevineH.EMT and MET: necessary or permissive for metastasis?Mol Oncol2017; 11: 755-69. 10.1002/1878-0261.12083Open DOISearch in Google Scholar
Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18: 939. doi: 10.1186/s12885-018-4845-0MrozikKMBlaschukOWCheongCMZannettinoACWVandykeK.N-cadherin in cancer metastasis its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer2018; 18: 939. 10.1186/s12885-018-4845-0Open DOISearch in Google Scholar
Nakajima S, Doi R, Toyoda E, Tsuji S, Wada M, Koizumi M, et al. N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res 2004; 10(12 Pt 1): 4125-33. doi: 10.1158/1078-0432.CCR-0578-03NakajimaSDoiRToyodaETsujiSWadaMKoizumiMN-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res2004; 10(12 Pt 1): 4125-33. 10.1158/1078-0432.CCR-0578-03Open DOISearch in Google Scholar
Zupancic D, Romih R. Heterogeneity of uroplakin localization in human normal urothelium, papilloma and papillary carcinoma. Radiol Oncol 2013; 47: 338-45. doi: 10.2478/raon-2013-0052ZupancicDRomihR.Heterogeneity of uroplakin localization in human normal urothelium, papilloma and papillary carcinoma. Radiol Oncol2013; 47: 338-45. 10.2478/raon-2013-0052Open DOISearch in Google Scholar
Olsburgh J, Harnden P, Weeks R, Smith B, Joyce A, Hall G, et al. Uroplakin gene expression in normal human tissues and locally advanced bladder cancer. J Pathol 2003; 199: 41-9. doi: 10.1002/path.1252OlsburghJHarndenPWeeksRSmithBJoyceAHallGUroplakin gene expression in normal human tissues and locally advanced bladder cancer. J Pathol2003; 199: 41-9. 10.1002/path.1252Open DOISearch in Google Scholar
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunology 2022; 15: 1127-42. doi: 10.1038/s41385-022-00565-0JafariNVRohnJL.The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunology2022; 15: 1127-42. 10.1038/s41385-022-00565-0Open DOISearch in Google Scholar
Jerman UD, Višnjar T, Bratkovič IH, Resnik N, Pavlin M, Veranič P, et al. Attachment of cancer urothelial cells to the bladder epithelium occurs on uroplakin-negative cells and is mediated by desmosomal and not by classical cadherins. Int J Mol Sci 2021; 22: 5565. doi: 10.3390/ijms22115565JermanUDVišnjarTBratkovičIHResnikNPavlinMVeraničPAttachment of cancer urothelial cells to the bladder epithelium occurs on uroplakin-negative cells and is mediated by desmosomal and not by classical cadherins. Int J Mol Sci2021; 22: 5565. 10.3390/ijms22115565Open DOISearch in Google Scholar
Yu J, Manabe M, Sun TT. Identification of an 85-100 kDa glycoprotein as a cell surface marker for an advanced stage of urothelial differentiation: association with the inter-plaque (‘hinge’) area. Epithelial Cell Biol 1992; 1: 4-12. PMID: 1307937YuJManabeMSunTT.Identification of an 85-100 kDa glycoprotein as a cell surface marker for an advanced stage of urothelial differentiation: association with the inter-plaque (‘hinge’) area. Epithelial Cell Biol1992; 1: 4-12. PMID: 1307937Search in Google Scholar
DeGraff DJ, Clark PE, Cates JM, Yamashita H, Robinson VL, Yu X, et al. Loss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation. PloS One 2012; 7: e36669. doi: 10.1371/journal.pone.0036669DeGraffDJClarkPECatesJMYamashitaHRobinsonVLYuXLoss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation. PloS One2012; 7: e36669. 10.1371/journal.pone.0036669Open DOISearch in Google Scholar
Resnik N, Višnjar T, Smrkolj T, Kreft ME, Romih R, Zupančič D. Selective targeting of lectins and their macropinocytosis in urothelial tumours: translation from in vitro to ex vivo. Histochem Cell Biol 2023; 160: 435-52. doi: 10.1007/s00418-023-02224-2ResnikNVišnjarTSmrkoljTKreftMERomihRZupančičD.Selective targeting of lectins and their macropinocytosis in urothelial tumours: translation from in vitro to ex vivo. Histochem Cell Biol2023; 160: 435-52. 10.1007/s00418-023-02224-2Open DOISearch in Google Scholar
Elie-Caille C, Lascombe I, Péchery A, Bittard H, Fauconnet S. Molecular and nanoscale evaluation of N-cadherin expression in invasive bladder cancer cells under control conditions or GW501516 exposure. Mol Cell Biochem 2020; 471: 113-27. doi: 10.1007/s11010-020-03771-1Elie-CailleCLascombeIPécheryABittardHFauconnetS.Molecular and nanoscale evaluation of N-cadherin expression in invasive bladder cancer cells under control conditions or GW501516 exposure. Mol Cell Biochem2020; 471: 113-27. 10.1007/s11010-020-03771-1Open DOISearch in Google Scholar
Kong D, Chen F, Sima NI. Inhibition of focal adhesion kinase induces apoptosis in bladder cancer cells via Src and the phosphatidylinositol 3-kinase/Akt pathway. Exp Ther Med 2015; 10: 1725-31. doi: 10.3892/etm.2015.2745KongDChenFSimaNI.Inhibition of focal adhesion kinase induces apoptosis in bladder cancer cells via Src and the phosphatidylinositol 3-kinase/Akt pathway. Exp Ther Med2015; 10: 1725-31. 10.3892/etm.2015.2745Open DOISearch in Google Scholar
Kong DB, Chen F, Sima N. Focal adhesion kinases crucially regulate TGFbetainduced migration and invasion of bladder cancer cells via Src kinase and E-cadherin. Onco Targets Ther 2017; 10: 1783-92. doi: 10.2147/OTT. S122463KongDBChenFSimaN.Focal adhesion kinases crucially regulate TGFbetainduced migration and invasion of bladder cancer cells via Src kinase and E-cadherin. Onco Targets Ther2017; 10: 1783-92. 10.2147/OTT. S122463Open DOISearch in Google Scholar
Barlow L, Meyer R, Shelkey E, Golombos D, Owczarek T, Rong L, et al. Mp48-09 integrin signaling modulation demonstrates potential therapeutic strategy in bladder cancer using three-dimensional organoid culture. [internet]. J Urol 2017; 197(Suppl 4S): e640. doi: 10.1016/j.juro.2017.02.1490 [cited 2025 Apr 15]. Available at: https://doi.org/10.1016/j.juro.2017.02.1490BarlowLMeyerRShelkeyEGolombosDOwczarekTRongLMp48-09 integrin signaling modulation demonstrates potential therapeutic strategy in bladder cancer using three-dimensional organoid culture. [internet]. J Urol2017; 197(Suppl 4S): e640. 10.1016/j.juro.2017.02.1490 [cited 2025 Apr 15]. Available at: https://doi.org/10.1016/j.juro.2017.02.1490Open DOISearch in Google Scholar
Smith CS, Golubovskaya VM, Peck E, Xu LH, Monia BP, Yang X, et al. Effect of focal adhesion kinase (FAK) downregulation with FAK antisense oligonucleotides and 5-fluorouracil on the viability of melanoma cell lines. Melanoma Res 2005; 15: 357-62. doi: 10.1097/00008390-200510000-00003SmithCSGolubovskayaVMPeckEXuLHMoniaBPYangXEffect of focal adhesion kinase (FAK) downregulation with FAK antisense oligonucleotides and 5-fluorouracil on the viability of melanoma cell lines. Melanoma Res2005; 15: 357-62. 10.1097/00008390-200510000-00003Open DOISearch in Google Scholar
Fortelny N, Overall CM, Pavlidis P, Freue GVC. Can we predict protein from mRNA levels? Nature 2017; 547: e19-20. doi: 10.1038/nature22293FortelnyNOverallCMPavlidisPFreueGVC.Can we predict protein from mRNA levels?Nature2017; 547: e19-20. 10.1038/nature22293Open DOISearch in Google Scholar
Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell 2016; 165: 535-50. doi: 10.1016/j.cell.2016.03.014LiuYBeyerAAebersoldR.On the dependency of cellular protein levels on mRNA abundance. Cell2016; 165: 535-50. 10.1016/j.cell.2016.03.014Open DOISearch in Google Scholar
Roupret M, Neuzillet Y, Larre S, Pignot G, Coloby P, Rebillard X, et al. Guidelines for good practice of intravesical instillations of BCG and mitomycin C from the French national cancer committee (CC-AFU) for nonmuscle invasive bladder cancer. Prog Urol 2012; 22: 920-31. doi: 10.1016/j. purol.2012.05.002RoupretMNeuzilletYLarreSPignotGColobyPRebillardXGuidelines for good practice of intravesical instillations of BCG and mitomycin C from the French national cancer committee (CC-AFU) for nonmuscle invasive bladder cancer. Prog Urol2012; 22: 920-31. 10.1016/j. purol.2012.05.002Open DOISearch in Google Scholar
Verastem Oncology. Defactinib, an oral, selective FAK inhibitor. [internet]. [cited 2025 Apr 16]. Available at: https://www.verastem.com/research/pipeline/VerastemOncology.Defactinib, an oral, selective FAK inhibitor. [internet]. [cited 2025 Apr 16]. Available at: https://www.verastem.com/research/pipeline/Search in Google Scholar
Lu Q, Rounds S. Focal adhesion kinase and endothelial cell apoptosis. Microvasc Res 2012; 83: 56-63. doi: 10.1016/j.mvr.2011.05.003LuQRoundsS.Focal adhesion kinase and endothelial cell apoptosis. Microvasc Res2012; 83: 56-63. 10.1016/j.mvr.2011.05.003Open DOISearch in Google Scholar
Schlaepfer D, Hauck C, Sieg D. Signaling through focal adhesion kinase. Prog Biophys Mol Biol 1999; 71: 435-78. doi: 10.1016/s0079-6107(98)00052-2SchlaepferDHauckCSiegD.Signaling through focal adhesion kinase. Prog Biophys Mol Biol1999; 71: 435-78. 10.1016/s0079-6107(98)00052-2Open DOISearch in Google Scholar
Kreft ME, Jezernik K, Kreft M, Romih R. Apical plasma membrane traffic in superficial cells of bladder urothelium. Ann N Y Acad Sci 2009; 1152: 18-29. doi: 10.1111/j.1749-6632.2008.04004.xKreftMEJezernikKKreftMRomihR.Apical plasma membrane traffic in superficial cells of bladder urothelium. Ann N Y Acad Sci2009; 1152: 18-29. 10.1111/j.1749-6632.2008.04004.xOpen DOISearch in Google Scholar
Kreft ME, Hudoklin S, Jezernik K, Romih R. Formation and maintenance of blood-urine barrier in urothelium. Protoplasma 2010; 246: 3-14. doi: 10.1007/s00709-010-0112-1KreftMEHudoklinSJezernikKRomihR.Formation and maintenance of blood-urine barrier in urothelium. Protoplasma2010; 246: 3-14. 10.1007/s00709-010-0112-1Open DOISearch in Google Scholar
DeGraff DJ, Cates JM, Mauney JR, Clark PE, Matusik RJ, Adam RM. When urothelial differentiation pathways go wrong: implications for bladder cancer development and progression. Urol Oncol 2013; 31: 802-11. doi: 10.1016/j.urolonc.2011.07.017DeGraffDJCatesJMMauneyJRClarkPEMatusikRJAdamRM.When urothelial differentiation pathways go wrong: implications for bladder cancer development and progression. Urol Oncol2013; 31: 802-11. 10.1016/j.urolonc.2011.07.017Open DOISearch in Google Scholar
Znidar K, Bosnjak M, Semenova N, Pakhomova O, Heller L, Cemazar M. Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget 2018; 9: 18665-81. doi: 10.18632/oncotarget.24816ZnidarKBosnjakMSemenovaNPakhomovaOHellerLCemazarM.Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget2018; 9: 18665-81. 10.18632/oncotarget.24816Open DOISearch in Google Scholar
Znidar K, Bosnjak M, Cemazar M, Heller LC. Cytosolic DNA sensor upregulation accompanies DNA electrotransfer in B16.F10 melanoma cells. Mol Ther Nucleic Acids 2016; 5: e322. doi: 10.1038/mtna.2016.34ZnidarKBosnjakMCemazarMHellerLC.Cytosolic DNA sensor upregulation accompanies DNA electrotransfer in B16.F10 melanoma cells. Mol Ther Nucleic Acids2016; 5: e322. 10.1038/mtna.2016.34Open DOISearch in Google Scholar