This work is licensed under the Creative Commons Attribution 4.0 International License.
Basta P, Bak A, Roszkowski K. Cancer treatment in pregnant women. Contemp Oncol 2015; 19: 354-60. doi: 10.5114/wo.2014.46236BastaPBakARoszkowskiKCancer treatment in pregnant womenContemp Oncol20151935460doi10.5114/wo.2014.46236470939426793018Open DOISearch in Google Scholar
Botha MH, Rajaram S, Karunaratne K. Cancer in pregnancy. Int J Gynecol Obstet 2018; 143: 137-42. doi: 10.1002/ijgo.12621BothaMHRajaramSKarunaratneKCancer in pregnancyInt J Gynecol Obstet201814313742doi10.1002/ijgo.1262130306590Open DOISearch in Google Scholar
Kal HB, Struikmans H. Radiotherapy during pregnancy: fact and fiction. Lancet Oncol 2005; 6: 328-33. doi: 10.1016/S1470-2045(05)70169-8KalHBStruikmansHRadiotherapy during pregnancy: fact and fictionLancet Oncol2005632833doi10.1016/S1470-2045(05)70169-815863381Open DOISearch in Google Scholar
Fenig E, Mishaeli M, Kalish Y, Lishner M. Pregnancy and radiation. Cancer Treat Rev 2001; 27: 1-7. doi: 10.1053/ctrv.2000.0193FenigEMishaeliMKalishYLishnerM.Pregnancy and radiationCancer Treat Rev20012717doi10.1053/ctrv.2000.019311237773Open DOISearch in Google Scholar
Leonardi M, Cecconi A, Luraschi R, Rondi E, Cattani F, Lazzari R, et al. Electron beam intraoperative radiotherapy (ELIOT) in pregnant women with breast cancer: from in vivo dosimetry to clinical practice. Breast Care 2017; 12: 396-400. doi: 10.1159/000479862LeonardiMCecconiALuraschiRRondiECattaniFLazzariRet alElectron beam intraoperative radiotherapy (ELIOT) in pregnant women with breast cancer: from in vivo dosimetry to clinical practiceBreast Care201712396400doi10.1159/000479862580371329456472Open DOISearch in Google Scholar
Shlensky V, Hallmeyer S, Juarez L, Parilla B V. Management of breast cancer during pregnancy: are we compliant with current guidelines? Am J Perinatol Reports 2017; 7: e39-43. doi: 10.1055/s-0037-1599133ShlenskyVHallmeyerSJuarezLParillaB VManagement of breast cancer during pregnancy: are we compliant with current guidelines?Am J Perinatol Reports20177e3943doi10.1055/s-0037-1599133533079428255521Open DOISearch in Google Scholar
De Santis M, Di Gianantonio E, Straface G, Cavaliere AF, Caruso A, Schiavon F, et al. Ionizing radiations in pregnancy and teratogenesis: a review of literature. Reprod Toxicol 2005; 20: 323-9. doi: 10.1016/j.reprotox.2005.04.004De SantisMDiGianantonio EStrafaceGCavaliereAFCarusoASchiavonFet alIonizing radiations in pregnancy and teratogenesis: a review of literatureReprod Toxicol2005203239doi10.1016/j.reprotox.2005.04.00415925481Open DOISearch in Google Scholar
Burdorf A, Figà-Talamanca I, Jensen TK, Thulstrup AM. Effects of occupational exposure on the reproductive system: core evidence and practical implications. Occup Med 2006; 56: 516-20. doi: 10.1093/occmed/kql113BurdorfAFigà-TalamancaIJensenTKThulstrupAMEffects of occupational exposure on the reproductive system: core evidence and practical implicationsOccup Med20065651620doi10.1093/occmed/kql11317151386Open DOISearch in Google Scholar
International Commission on Radiological Protection. Protection IC on R. ICRP publication 84 – pregnancy and medical radiation. Ann ICRP. 2000; 30(1): 43.International Commission on Radiological Protection. Protection IC on RICRP publication 84 – pregnancy and medical radiationAnn ICRP200030143Search in Google Scholar
Smith H, International Commission on Radiological Protection. 1990 recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Oxford: Pergamon press; 1991. [cited 2022 Jun 15]. Available at: https://www.icrp.org/publication.asp?id=icrp%20publication%2060SmithHInternational Commission on Radiological Protection1990 recommendations of the International Commission on Radiological ProtectionICRP Publication 60OxfordPergamon press1991cited 2022 Jun 15Available athttps://www.icrp.org/publication.asp?id=icrp%20publication%2060Search in Google Scholar
Organization for Occupational Radiation Safety in Interventional Fluoroscopy. Occupational exposure to ionizing radiation in interventional fluoroscopy: severity of adverse effects of a growing health problem. Washington D.C.: ORSIF; 2015.Organization for Occupational Radiation Safety in Interventional FluoroscopyOccupational exposure to ionizing radiation in interventional fluoroscopy: severity of adverse effects of a growing health problemWashington D.CORSIF2015Search in Google Scholar
Amant F, Han SN, Gziri MM, Vandenbroucke T, Verheecke M, Van Calsteren K. Management of cancer in pregnancy. Best Pract Res Clin Obstet Gynaecol 2015; 29: 741-53. doi: 10.1016/j.bpobgyn.2015.02.006AmantFHanSNGziriMMVandenbrouckeTVerheeckeMVan CalsterenKManagement of cancer in pregnancyBest Pract Res Clin Obstet Gynaecol20152974153doi10.1016/j.bpobgyn.2015.02.00625797199Open DOISearch in Google Scholar
Wallack MK, Wolf Jr JA, Bedwinek J, Denes AE, Glasgow G, Kumar B, et al. Gestational carcinoma of the female breast. Curr Probl Cancer 1983; 7: 1-58. doi: 10.1016/s0147-0272(83)80006-3WallackMKWolfJr JABedwinekJDenesAEGlasgowGKumarBet alGestational carcinoma of the female breastCurr Probl Cancer19837158doi10.1016/s0147-0272(83)80006-36303698Open DOISearch in Google Scholar
Royal College of Obstetricians and Gynaecologists. Pregnancy and breast cancer. RCOG Green-top Guidel No 12; 2011.Royal College of Obstetricians and GynaecologistsPregnancy and breast cancerRCOG Green-top Guidel No 12;2011Search in Google Scholar
Streffer C, Shore R, Konermann G, Meadows A, Holm LE, Stather J, et al. Biological effects after prenatal irradiation (embryo and fetus). A report of the International Commission on Radiological Protection. Ann ICRP 2003; 33(1-2): 5-206. PMID: 12963090StrefferCShoreRKonermannGMeadowsAHolmLEStatherJet alBiological effects after prenatal irradiation (embryo and fetus). A report of the International Commission on Radiological ProtectionAnn ICRP2003331-25206PMID: 1296309010.1016/S0146-6453(03)00021-614531414Search in Google Scholar
Gorson RO, Brent RL, Moseley RD. Medical radiation exposure of pregnant and potentially pregnant women. Natl Counc Radiat Prot Meas Rep 1977; 54: 70-100.GorsonROBrentRLMoseleyRDMedical radiation exposure of pregnant and potentially pregnant womenNatl Counc Radiat Prot Meas Rep19775470100Search in Google Scholar
Brent RL, Frush DP, Harms RW, Linet MS. Preconception and prenatal radiation exposure: health effects and protective guidance. NCRP No. 174. Sel Work Robert Brent 2013; 39.BrentRLFrushDPHarmsRWLinetMSPreconception and prenatal radiation exposure: health effects and protective guidance. NCRP No. 174Sel Work Robert Brent201339Search in Google Scholar
Antypas C, Sandilos P, Kouvaris J, Balafouta E, Karinou E, Kollaros N, et al. Fetal dose evaluation during breast cancer radiotherapy. Int J Radiat Oncol Biol Phys 1998; 40: 995-9. doi: 10.1016/s0360-3016(97)00909-7AntypasCSandilosPKouvarisJBalafoutaEKarinouEKollarosNet alFetal dose evaluation during breast cancer radiotherapyInt J Radiat Oncol Biol Phys1998409959doi10.1016/s0360-3016(97)00909-79531386Open DOISearch in Google Scholar
Ngu SLC, DuvalL P, Collins C. Foetal radiation dose in radiotherapy for breast cancer. Australas Radiol 1992; 36: 321-2. doi: 10.1111/j.1440-1673.1992. tb03209.xNguSLCDuvalLPCollinsCFoetal radiation dose in radiotherapy for breast cancerAustralas Radiol1992363212doi10.1111/j.1440-1673.1992.tb03209.x1299192Open DOISearch in Google Scholar
Van der Giessen P-H. Measurement of the peripheral dose for the tangential breast treatment technique with Co-60 gamma radiation and high energy X-rays. Radiother Oncol 1997; 42: 257-64. doi: 10.1016/s0167-8140(96)01884-1Van der GiessenP-H.Measurement of the peripheral dose for the tangential breast treatment technique with Co-60 gamma radiation and high energy X-raysRadiother Oncol19974225764doi10.1016/s0167-8140(96)01884-19155075Open DOISearch in Google Scholar
Handbook of anatomical models for radiation dosimetry. Xu XG, Eckerman KF, editors. Boca Raton: CRC Press; 2009. doi: 10.1201/EBK1420059793Handbook of anatomical models for radiation dosimetryXuXGEckermanKFeditorsBoca RatonCRC Press2009doi10.1201/EBK1420059793Open DOISearch in Google Scholar
Anderson CA, Kelley KC, Goorley JT. Mesh human phantoms with MCNP. Los Alamos, NM (United States): Los Alamos National Lab.(LANL); 2012.AndersonCAKelleyKCGoorleyJT.Mesh human phantoms with MCNPLos Alamos, NM (United States)Los Alamos National Lab.(LANL)2012Search in Google Scholar
Xu XG, Taranenko V, Zhang J, Shi C. A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods – RPI-P3,-P6 and-P9. Phys Med Biol 2007; 52: 7023-44. doi: 10.1088/0031-9155/52/23/017XuXGTaranenkoVZhangJShiCA boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods – RPI-P3,-P6 and-P9Phys Med Biol200752702344doi10.1088/0031-9155/52/23/01718029991Open DOISearch in Google Scholar
Becker J, Zankl M, Fill U, Hoeschen C. Katja – the 24th week of virtual pregnancy for dosimetric calculations. Polish J Med Phys Eng 2008; 14: 13-20. doi: 10.2478/v10013-008-0002-4BeckerJZanklMFillUHoeschenCKatja – the 24th week of virtual pregnancy for dosimetric calculationsPolish J Med Phys Eng2008141320doi10.2478/v10013-008-0002-4Open DOISearch in Google Scholar
Maynard MR, Long NS, Moawad NS, Shifrin RY, Geyer AM, Fong G, et al. The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry. Phys Med Biol 2014; 59: 4325-43. doi: 10.1088/00319155/59/15/4325MaynardMRLongNSMoawadNSShifrinRYGeyerAMFongGet alThe UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetryPhys Med Biol201459432543doi10.1088/00319155/59/15/4325Open DOISearch in Google Scholar
Paulbeck C, Griffin K, Lee C, Cullings H, Egbert SD, Funamoto S, et al. Dosimetric impact of a new computational voxel phantom series for the Japanese atomic bomb survivors: pregnant females. Radiat Res 2019; 192: 538-61. doi: 10.1667/RR15394.1PaulbeckCGriffinKLeeCCullingsHEgbertSDFunamotoSet alDosimetric impact of a new computational voxel phantom series for the Japanese atomic bomb survivors: pregnant femalesRadiat Res201919253861doi10.1667/RR15394.131469615Open DOISearch in Google Scholar
Xu XG. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol 2014; 59: R233-302. doi: 10.1088/0031-9155/59/18/R233XuXGAn exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year historyPhys Med Biol201459R233302doi10.1088/0031-9155/59/18/R233416987625144730Open DOISearch in Google Scholar
International Commission on Radiological Protection. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Ann ICRP 2002; 32(3-4): 1-277.International Commission on Radiological ProtectionBasic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89Ann ICRP2002323-4127710.1016/S0146-6453(03)00002-2Search in Google Scholar
Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Intraoperative imaging and image-guided therapy. Springer; 2014. p. 277-89. doi: 10.1007/978-14614-7657-3_19KikinisRPieperSDVosburghKG3D Slicer: a platform for subject-specific image analysis, visualization, and clinical supportInIntraoperative imaging and image-guided therapySpringer2014p27789doi10.1007/978-14614-7657-3_19Open DOISearch in Google Scholar
Prokop M. Spiral and multislice computed tomography of the body. Thieme Medical Publishers; 2003.ProkopM.Spiral and multislice computed tomography of the bodyThieme Medical Publishers200310.1055/b-002-79382Search in Google Scholar
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 2020; 17: 261-72. doi: 10.1038/s41592-019-0686-2VirtanenPGommersROliphantTEHaberlandMReddyTCournapeauDet alSciPy 1.0: fundamental algorithms for scientific computing in PythonNat Methods20201726172doi10.1038/s41592-019-0686-2705664432015543Open DOISearch in Google Scholar
White DR, Griffith RV, Wilson IN. ICRU Report 46. Photon, electron, proton and neutron interaction data for body tissues. J Int Comm Radiat Units Meas 1992; 1: NP.WhiteDRGriffithRVWilsonINICRU Report 46. Photon, electron, proton and neutron interaction data for body tissuesJ Int Comm Radiat Units Meas19921NP10.1093/jicru/os24.1.Report46Search in Google Scholar
Van Rossum G, Drake FL. Python reference manual. iUniverse Indiana; 2000.VanRossum GDrakeFL.Python reference manualiUniverse Indiana2000Search in Google Scholar
Werner CJ, Bull JS, Solomon CJ, Brown FB, McKinney GW, Rising ME, et al. MCNP version 6.2 Release notes. Report LA-UR-18-20808. Los Alamos Natl Lab; 2018.WernerCJBullJSSolomonCJBrownFBMcKinneyGWRisingMEet alMCNP version 6.2 Release notesReport LA-UR-18-20808. Los Alamos Natl Lab201810.2172/1419730Search in Google Scholar
Brkić H, Ivković A, Kasabašić M, Poje Sovilj M, Jurković S, Štimac D, et al. The influence of field size and off-axis distance on photoneutron spectra of the 18 MV Siemens Oncor linear accelerator beam. Radiat Meas 2016; 93: 28-34. doi: 10.1016/j.radmeas.2016.07.002BrkićHIvkovićAKasabašićMPojeSovilj MJurkovićSŠtimacDet alThe influence of field size and off-axis distance on photoneutron spectra of the 18 MV Siemens Oncor linear accelerator beamRadiat Meas20169328-34doi10.1016/j.radmeas.2016.07.002Open DOISearch in Google Scholar
Ivković A, Faj D, Galić S, Karimi AH, Kasabašić M, Brkić H. Accuracy of empirical formulas in evaluation of neutron dose equivalent inside the 60Co vaults reconstructed for medical linear accelerators. Int J Radiat Res 2020;18: 99-107. doi: 10.18869/acadpub.ijrr.18.1.99IvkovićAFajDGalićSKarimiAHKasabašićMBrkićHAccuracy of empirical formulas in evaluation of neutron dose equivalent inside the 60Co vaults reconstructed for medical linear acceleratorsInt J Radiat Res20201899-107doi10.18869/acadpub.ijrr.18.1.99Open DOISearch in Google Scholar
Kolacio MŠ, Brkić H, Faj D, Radojčić ĐS, Rajlić D, Obajdin N, et al. Validation of two calculation options built in Elekta Monaco Monte Carlo based algorithm using MCNP code. Radiat Phys Chem 2021; 179: 109237. doi: 10.1016/j.radphyschem.2020.109237KolacioMŠBrkićHFajDRadojčićĐSRajlićDObajdinNet alValidation of two calculation options built in Elekta Monaco Monte Carlo based algorithm using MCNP codeRadiat Phys Chem2021179109237doi10.1016/j.radphyschem.2020.109237Open DOISearch in Google Scholar
Vukovic B, Faj D, Poje M, Varga M, Radolic V, Miklavcic I, et al. A neutron track etch detector for electron linear accelerators in radiotherapy. Radiol Oncol 2010; 44: 62-6. 10.2478/v10019-010-0003-2VukovicBFajDPojeMVargaMRadolicVMiklavcicIet alA neutron track etch detector for electron linear accelerators in radiotherapyRadiol Oncol20104462610.2478/v10019-010-0003-2342367022933893Open DOISearch in Google Scholar
Brkić H, Kasabašić M, Ivković A, Agić D, Krpan I, Faj D. Influence of head cover on the neutron dose equivalent in Monte Carlo simulations of high energy medical linear accelerator. Nucl Technol Radiat Prot 2018; 33: 217-22. doi: 10.2298/NTRP1802217BBrkićHKasabašićMIvkovićAAgićDKrpanIFajDInfluence of head cover on the neutron dose equivalent in Monte Carlo simulations of high energy medical linear acceleratorNucl Technol Radiat Prot20183321722doi10.2298/NTRP1802217BOpen DOISearch in Google Scholar
Zankl M. Adult male and female reference computational phantoms (ICRP Publication 110). Japanese J Heal Phys 2010; 45: 357-69. 10.5453/ JHPS.45.357ZanklMAdult male and female reference computational phantoms (ICRP Publication 110)Japanese J Heal Phys2010453576910.5453/JHPS.45.357Open DOISearch in Google Scholar
Detwiler R, McConn R, Grimes T, Upton S, Engel E. Compendium of material composition data for radiation transport modeling [Internet]. Richland, WA (United States): Pacific Northwest National Lab. (PNNL); [cited 2022 May 15]. doi: 10.2172/1782721. Available from: https://www.osti.gov/servlets/purl/1782721/DetwilerRMcConnRGrimesTUptonSEngelECompendium of material composition data for radiation transport modeling [Internet]. Richland, WA (United States): Pacific Northwest National Lab(PNNL); [cited 2022 May 15]doi10.2172/1782721Available fromhttps://www.osti.gov/servlets/purl/1782721/Open DOISearch in Google Scholar
Parisi A, Dabin J, Schoonjans W, Van Hoey O, Mégret P, Vanhavere F. Photon energy response of LiF: Mg, Ti (MTS) and LiF: Mg, Cu, P (MCP) thermoluminescent detectors: experimental measurements and microdosimetric modeling. Radiat Phys Chem 2019; 163: 67-73. doi: 10.1016/j.radphyschem.2019.05.021ParisiADabinJSchoonjansWVan HoeyOMégretPVanhavereFPhoton energy response of LiF: Mg, Ti (MTS) and LiF: Mg, Cu, P (MCP) thermoluminescent detectors: experimental measurements and microdosimetric modelingRadiat Phys Chem20191636773doi10.1016/j.radphyschem.2019.05.021Open DOISearch in Google Scholar
Bednarz B, Xu XG. A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms. Med Phys 2008; 35: 3054-61. doi: 10.1118/1.2938519BednarzBXuXGA feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantomsMed Phys200835305461doi10.1118/1.2938519280971318697528Open DOISearch in Google Scholar
Mazonakis M, Tzedakis A, Damilakis J. Monte Carlo simulation of radiotherapy for breast cancer in pregnant patients: how to reduce the radiation dose and risks to fetus? Radiat Prot Dosimetry 2017; 175: 10-6. doi: 10.1093/rpd/ ncw260MazonakisMTzedakisADamilakisJMonte Carlo simulation of radiotherapy for breast cancer in pregnant patients: how to reduce the radiation dose and risks to fetus?Radiat Prot Dosimetry2017175106doi10.1093/rpd/ncw26027613746Open DOISearch in Google Scholar
Stovall M, Blackwell CR, Cundiff J, Novack DH, Palta JR, Wagner LK, et al. Fetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group No. 36. Med Phys 1995; 22: 6382. doi: 10.1118/1.597525StovallMBlackwellCRCundiffJNovackDHPaltaJRWagnerLKet alFetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group No. 36Med Phys1995226382doi10.1118/1.5975257715571Open DOISearch in Google Scholar
Chofor N, Harder D, Willborn KC, Poppe B. Internal scatter, the unavoidable major component of the peripheral dose in photon-beam radiotherapy. Phys Med Biol 2012; 57: 1733-43. doi: 10.1088/0031-9155/57/6/1733ChoforNHarderDWillbornKCPoppeBInternal scatter, the unavoidable major component of the peripheral dose in photon-beam radiotherapyPhys Med Biol201257173343doi10.1088/0031-9155/57/6/173322398213Open DOISearch in Google Scholar
Mazonakis M, Damilakis J. Estimation and reduction of the radiation dose to the fetus from external-beam radiotherapy. Phys Medica 2017; 43: 148-52. doi: 10.1016/j.ejmp.2017.09.130MazonakisMDamilakisJEstimation and reduction of the radiation dose to the fetus from external-beam radiotherapyPhys Medica20174314852doi10.1016/j.ejmp.2017.09.13028943130Open DOISearch in Google Scholar
Schneider T, Stoll E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 1978; 17: 1302. doi: 10.1103/PhysRevB.17.1302SchneiderTStollEMolecular-dynamics study of a three-dimensional one-component model for distortive phase transitionsPhys Rev B1978171302doi10.1103/PhysRevB.17.1302Open DOISearch in Google Scholar
De Saint-Hubert M, Tymińska K, Stolarczyk L, Brkić H. Fetus dose calculation during proton therapy of pregnant phantoms using MCNPX and MCNP6. 2 codes. Radiat Meas 2021; 149: 1-7. 106665. doi: 10.1016/j. radmeas.2021.106665De Saint-HubertMTymińskaKStolarczykLBrkićHFetus dose calculation during proton therapy of pregnant phantoms using MCNPX and MCNP6. 2 codesRadiat Meas202114917106665doi10.1016/j.radmeas.2021.106665Open DOISearch in Google Scholar