Otwarty dostęp

Analysis of damage-associated molecular pattern molecules due to electroporation of cells in vitro


Zacytuj

Orlowski S, Belehradek J, Paoletti C, Mir LM. Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. J Biochem Pharmacol Res 1988; 3: 4727-33. doi: 10.1016/0006-2952(88)90344-9OrlowskiSBelehradekJPaolettiCMirLMTransient electropermeabilization of cells in cultureIncrease of the cytotoxicity of anticancer drugs. J Biochem Pharmacol Res1988347273310.1016/0006-2952(88)90344-9Open DOISearch in Google Scholar

Mir LM. Bases and rationale of the electrochemotherapy. EJC Suppl 2006; 4: 38-44. doi: 0.1016/j.ejcsup.2006.08.005MirLMBases and rationale of the electrochemotherapyEJC Suppl200643844doi: 0.1016/j.ejcsup.2006.08.00510.1007/978-3-540-73044-6_158Search in Google Scholar

Scheffer HJ, Nielsen K, De Jong MC, Van Tilborg AJM, Vieveen JM, Bouwman A, et al. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J Vasc Interv Radiol 2014 25: 997-1011. doi: 10.1016/j.jvir.2014.01.028SchefferHJNielsenKDe JongMCVanTilborg AJMVieveenJMBouwmanAet alIrreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacyJ Vasc Interv Radiol201425997101110.1016/j.jvir.2014.01.02824656178Open DOISearch in Google Scholar

Phillips M, Maor E, Rubinsky B. Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng 2010; 132: 091003. doi: 10.1115/1.4001882PhillipsMMaorERubinskyBNonthermal irreversible electroporation for tissue decellularizationJ Biomech Eng201013209100310.1115/1.400188220815637Open DOISearch in Google Scholar

Davalos RV, Mir LM, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng 2005; 3: 223-31. doi: 10.1007/s10439-005-8981-8DavalosRVMirLMRubinskyBTissue ablation with irreversible electroporationAnn Biomed Eng200532233110.1007/s10439-005-8981-815771276Open DOISearch in Google Scholar

Chen X, Ren Z, Zhu T, Zhang X, Peng Z, Xie H, et al. Electric ablation with irreversible electroporation (IRE) in vital hepatic structures and follow-up investigation. Sci Rep 2015; 5: 16233. doi: 10.1038/srep16233ChenXRenZZhuTZhangXPengZXieHet alElectric ablation with irreversible electroporation (IRE) in vital hepatic structures and follow-up investigationSci Rep201551623310.1038/srep16233463789926549662Open DOISearch in Google Scholar

Jiang C, Davalos RV, Bischof JC. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 2015; 62: 4-20. doi: 10.1109/TBME.2014.2367543JiangCDavalosRVBischofJCA review of basic to clinical studies of irreversible electroporation therapyIEEE Trans Biomed Eng20156242010.1109/TBME.2014.236754325389236Open DOISearch in Google Scholar

Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 2007; 14: 1237-43. doi: 10.1038/sj.cdd.4402148GalluzziLMaiuriMCVitaleIZischkaHCastedoMZitvogelLet alCell death modalities: classification and pathophysiological implicationsCell Death Differ20071412374310.1038/sj.cdd.440214817431418Open DOISearch in Google Scholar

Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Exp Teratol 1973; 7: 253-66. doi: 10.1002/tera.1420070306SchweichelJUMerkerHJThe morphology of various types of cell death in prenatal tissuesExp Teratol197372536610.1002/tera.14200703064807128Open DOISearch in Google Scholar

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 2018; 25: 486-541. doi: 10.1038/s41418-017-0012-4GalluzziLVitaleIAaronsonSAAbramsJMAdamDAgostinisPet alMolecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018Cell Death Differ20182548654110.1038/s41418-017-0012-4586423929362479Open DOISearch in Google Scholar

Batista Napotnik T, Rebersek M, Vernier PT, Mali B, Miklavcic D. Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry 2016; 110: 1-12. doi: 10.1016/j.bioelechem.2016.02.011BatistaNapotnik TRebersekMVernierPTMaliBMiklavcicDEffects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic reviewBioelectrochemistry201611011210.1016/j.bioelechem.2016.02.01126946156Open DOISearch in Google Scholar

Beebe SJ. Regulated and apoptotic cell death after nanosecond electroporation. In: Miklavčič D, editor. Handbook of electroporation Heidelberg: Springer International Publishing; 2017. p. 511-28. doi: 10.1007/978-3-319-32886-7_146BeebeSJRegulated and apoptotic cell death after nanosecond electroporationInMiklavčičDeditorHandbook of electroporationHeidelbergSpringer International Publishing2017p5112810.1007/978-3-319-32886-7_146Open DOISearch in Google Scholar

Chai W, Zhang W, Wei Z, Xu Y, Shi J, Luo X, et al. Irreversible electroporation of the uterine cervix in a rabbit model. Biomed Microdevices 2017; 19: 103. doi: 10.1007/s10544-017-0248-2ChaiWZhangWWeiZXuYShiJLuoXet alIrreversible electroporation of the uterine cervix in a rabbit modelBiomed Microdevices20171910310.1007/s10544-017-0248-229138988Open DOISearch in Google Scholar

Kim HB, Sung CK, Baik KY, Moon KW, Kim HS, Yi JH, et al. Changes of apoptosis in tumor tissues with time after irreversible electroporation. Biochem Biophys Res Commun 2013; 435: 651-6. doi: 10.1016/j.bbrc.2013.05.039KimHBSungCKBaikKYMoonKWKimHSYiJHet alChanges of apoptosis in tumor tissues with time after irreversible electroporationBiochem Biophys Res Commun2013435651610.1016/j.bbrc.2013.05.03923688425Open DOISearch in Google Scholar

Lee EW, Loh CT, Kee ST. Imaging guided percutaneous irreversible electroporation: Ultrasound and immunohistological correlation. Technol Cancer Res Treat 2007; 6: 287-93. doi: 10.1177/153303460700600404LeeEWLohCTKeeSTImaging guided percutaneous irreversible electroporation: Ultrasound and immunohistological correlationTechnol Cancer Res Treat200762879310.1177/15330346070060040417668935Open DOISearch in Google Scholar

Lee EW, Wong D, Tafti BA, Prieto V, Totonchy M, Hilton J, et al. Irreversible electroporation in eradication of rabbit VX2 liver tumor. J Vasc Interv Radiol 2012; 23: 833-40. doi: 10.1016/j.jvir.2012.02.017LeeEWWongDTaftiBAPrietoVTotonchyMHiltonJet alIrreversible electroporation in eradication of rabbit VX2 liver tumorJ Vasc Interv Radiol2012238334010.1016/j.jvir.2012.02.01722534357Open DOISearch in Google Scholar

Zhang Z, Li W, Procissi D, Tyler P, Omary RA, Larson AC. Rapid dramatic alterations to the tumor microstructure in pancreatic cancer following irreversible electroporation ablation. Nanomedicine 2014; 9: 1181-92. doi: 10.2217/nnm.13.72ZhangZLiWProcissiDTylerPOmaryRALarsonACRapid dramatic alterations to the tumor microstructure in pancreatic cancer following irreversible electroporation ablationNanomedicine2014911819210.2217/nnm.13.72395203524024571Open DOISearch in Google Scholar

José A, Sobrevals L, Ivorra A, Fillat C. Irreversible electroporation shows efficacy against pancreatic carcinoma without systemic toxicity in mouse models. Cancer Lett 2012; 317: 16-23. doi: 10.1016/j.canlet.2011.11.004JoséASobrevalsLIvorraAFillatCIrreversible electroporation shows efficacy against pancreatic carcinoma without systemic toxicity in mouse modelsCancer Lett2012317162310.1016/j.canlet.2011.11.00422079741Open DOISearch in Google Scholar

Al-Sakere B, André F, Bernat C, Connault E, Opolon P, Davalos RV, et al. Tumor ablation with irreversible electroporation. PLoS One 2007; 2: e1135. doi: 10.1371/journal.pone.0001135Al-SakereBAndréFBernatCConnaultEOpolonPDavalosRVet alTumor ablation with irreversible electroporationPLoS One20072e113510.1371/journal.pone.0001135206584417989772Open DOISearch in Google Scholar

Zhang Y, Lyu C, Liu Y, Lv Y, Chang TT, Rubinsky B. Molecular and histological study on the effects of non-thermal irreversible electroporation on the liver. Biochem Biophys Res Commun 2018; 500: 665-70. doi: 10.1016/j.bbrc.2018.04.132ZhangYLyuCLiuYLvYChangTTRubinskyBMolecular and histological study on the effects of non-thermal irreversible electroporation on the liverBiochem Biophys Res Commun20185006657010.1016/j.bbrc.2018.04.132599003529678581Open DOISearch in Google Scholar

López-Alonso B, Hernáez A, Sarnago H, Naval A, Güemes A, Junquera C, et al. Histopathological and ultrastructural changes after electroporation in pig liver using parallel-plate electrodes and high-performance generator. Sci Rep 2019; 9: 2467. doi: 10.1038/s41598-019-39433-6López-AlonsoBHernáezASarnagoHNavalAGüemesAJunqueraCet alHistopathological and ultrastructural changes after electroporation in pig liver using parallel-plate electrodes and high-performance generatorSci Rep20199246710.1038/s41598-019-39433-6638995730804395Open DOISearch in Google Scholar

Nuccitelli R, Berridge JC, Mallon Z, Kreis M, Athos B, Nuccitelli P. Nanoelectroablation of murine tumors triggers a cd8-dependent inhibition of secondary tumor growth. PLoS One 2015; 10: e0134364. doi: 10.1371/journal.pone.0134364NuccitelliRBerridgeJCMallonZKreisMAthosBNuccitelliPNanoelectroablation of murine tumors triggers a cd8-dependent inhibition of secondary tumor growthPLoS One201510e013436410.1371/journal.pone.0134364452178226231031Open DOISearch in Google Scholar

Nuccitelli R, McDaniel A, Anand S, Cha J, Mallon Z, Berridge J, et al. Nanopulse stimulation is a physical modality that can trigger immunogenic tumor cell death. J Immunother Cancer 2017; 5: 32. doi: 10.1186/s40425-017-0234-5NuccitelliRMcDanielAAnandSChaJMallonZBerridgeJet alNanopulse stimulation is a physical modality that can trigger immunogenic tumor cell deathJ Immunother Cancer201753210.1186/s40425-017-0234-5539462328428881Open DOISearch in Google Scholar

Guo S, Jing Y, Burcus NI, Lassiter BP, Tanaz R, Heller R, et al. Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases. Int J Cancer 2018; 142: 629-40. doi: 10.1002/ijc.31071GuoSJingYBurcusNILassiterBPTanazRHellerRet alNano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastasesInt J Cancer20181426294010.1002/ijc.3107128944452Open DOISearch in Google Scholar

Rossi A, Pakhomova ON, Mollica PA, Casciola M, Mangalanathan U, Pakhomov AG, et al. Nanosecond pulsed electric fields induce endoplasmic reticulum stress accompanied by immunogenic cell death in murine models of lymphoma and colorectal cancer. Cancers 2019; 11: 2034. doi: 10.3390/cancers11122034RossiAPakhomovaONMollicaPACasciolaMMangalanathanUPakhomovAGet alNanosecond pulsed electric fields induce endoplasmic reticulum stress accompanied by immunogenic cell death in murine models of lymphoma and colorectal cancerCancers201911203410.3390/cancers11122034696663531861079Open DOISearch in Google Scholar

Calvet CY, Famin D, André FM, Mir LM. Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. Oncoimmunology 2014; 3: e28131. doi: 10.4161/onci.28131CalvetCYFaminDAndréFMMirLMElectrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cellsOncoimmunology20143e2813110.4161/onci.28131411194025083316Open DOISearch in Google Scholar

Ringel-Scaia VM, Beitel-White N. Lorenzo MF, Brock RM, Huie KE, Coutermarsh-Ott S. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine 2019; 44: 112-25. doi: 10.1016/j.ebiom.2019.05.036Ringel-ScaiaVMBeitel-WhiteNLorenzoMFBrockRMHuieKECoutermarsh-OttSHigh-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunityEBioMedicine2019441122510.1016/j.ebiom.2019.05.036660695731130474Open DOISearch in Google Scholar

Schultheis K, Smith, TRF, Kiosses WB, Kraynyak KA, Wong A, Oh J, et al. Delineating the cellular mechanisms associated with skin electroporation. Hum Gene Ther Methods 2018; 29: 177-88. doi: 10.1089/hgtb.2017.105SchultheisKSmithTRFKiossesWBKraynyakKAWongAOhJet alDelineating the cellular mechanisms associated with skin electroporationHum Gene Ther Methods2018291778810.1089/hgtb.2017.105642199329953259Open DOISearch in Google Scholar

Zhao J, Wen X, Tian L, Li T, Xu C, Wen X, et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat Commun 2019; 10: 1-14. doi: 10.1038/s41467-019-08782-1ZhaoJWenXTianLLiTXuCWenXet alIrreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancerNat Commun20191011410.1038/s41467-019-08782-1638530530796212Open DOISearch in Google Scholar

Vogl TJ, Wissniowski TT, Naguib NNN, Hammerstingl RM, Mack MG, Münch S, et al. Activation of tumor-specific T lymphocytes after laser-induced thermotherapy in patients with colorectal liver metastases. Cancer Immunol Immunother 2019; 58: 1557-63. doi: 10.1007/s00262-009-0663-1VoglTJWissniowskiTTNaguibNNNHammerstinglRMMackMGMünchSet alActivation of tumor-specific T lymphocytes after laser-induced thermotherapy in patients with colorectal liver metastasesCancer Immunol Immunother20195815576310.1007/s00262-009-0663-119184001Open DOISearch in Google Scholar

Bulvik BE, Rozenblum N, Gourevich S, Ahmed M, Andriyanov AV, Galun E, et al. Irreversible electroporation versus radiofrequency ablation: a comparison of local and systemic effects in a small-animal model. Radiology 2016; 280: 413-24. doi: 10.1148/radiol.2015151166BulvikBERozenblumNGourevichSAhmedMAndriyanovAVGalunEet alIrreversible electroporation versus radiofrequency ablation: a comparison of local and systemic effects in a small-animal modelRadiology20162804132410.1148/radiol.2015151166Open DOISearch in Google Scholar

White SB, Zhang Z, Chen J, Gogineni VR, Larson AC. Early immunologic response of irreversible electroporation versus cryoablation in a rodent model of pancreatic cancer. J Vasc Interv Radiol 2018; 29: 1764-9. doi: 10.1016/j.jvir.2018.07.009WhiteSBZhangZChenJGogineniVRLarsonACEarly immunologic response of irreversible electroporation versus cryoablation in a rodent model of pancreatic cancerJ Vasc Interv Radiol2018291764910.1016/j.jvir.2018.07.009Open DOISearch in Google Scholar

Scheffer HJ, Stam AGM, Geboers B, Vroomen LGPH, Ruarus A, de Bruijn B, et al. Irreversible electroporation of locally advanced pancreatic cancer transiently alleviates immune suppression and creates a window for antitumor T cell activation. Oncoimmunology 2019; 8: 1652532. doi: 10.1080/2162402X.2019.1652532SchefferHJStamAGMGeboersBVroomenLGPHRuarusAde BruijnBet alIrreversible electroporation of locally advanced pancreatic cancer transiently alleviates immune suppression and creates a window for antitumor T cell activationOncoimmunology20198165253210.1080/2162402X.2019.1652532Open DOISearch in Google Scholar

Pandit H, Hong YK, Li Y, Rostas J, Pulliam Z, Li P, et al. Evaluating the regulatory immunomodulation effect of irreversible electroporation (ire) in pancreatic adenocarcinoma. Ann Surg Oncol 2019; 26: 800-6. doi: 10.1245/s10434-018-07144-3PanditHHongYKLiYRostasJPulliamZLiPet alEvaluating the regulatory immunomodulation effect of irreversible electroporation (ire) in pancreatic adenocarcinomaAnn Surg Oncol201926800610.1245/s10434-018-07144-3Open DOISearch in Google Scholar

Calvet CY, Mir LM. The promising alliance of anti-cancer electrochemotherapy with immunotherapy. Cancer Metastasis Rev 2016; 35: 165-77. doi: 10.1007/s10555-016-9615-3CalvetCYMirLMThe promising alliance of anti-cancer electrochemotherapy with immunotherapyCancer Metastasis Rev2016351657710.1007/s10555-016-9615-3Open DOISearch in Google Scholar

Sersa G, Teissie J, Cemazar M, Signori E, Kamensek U, Marshall G, et al. Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunol Immunother 2015; 64: 1315-27. doi: 10.1007/s00262-015-1724-2SersaGTeissieJCemazarMSignoriEKamensekUMarshallGet alElectrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransferCancer Immunol Immunother20156413152710.1007/s00262-015-1724-2Open DOISearch in Google Scholar

Serša G, Miklavcic D, Cemazar M, Belehradek J, Jarm T, Mir LM. Electrochemotherapy with CDDP on LPB sarcoma: comparison of the anti- tumor effectiveness in immunocompetent and immunodeficient mice. Bioelectrochem Bioenerg 1997; 43: 279-83. doi: 10.1016/S0302-4598(96)05194-XSeršaGMiklavcicDCemazarMBelehradekJJarmTMirLMElectrochemotherapy with CDDP on LPB sarcoma: comparison of the anti- tumor effectiveness in immunocompetent and immunodeficient miceBioelectrochem Bioenerg1997432798310.1016/S0302-4598(96)05194-XOpen DOISearch in Google Scholar

Gerlini G, Tun-Kyi A, Dudli C, Burg G, Pimpinelli N, Nestle FO. Metastatic melanoma secreted IL-10 down-regulates CD1 molecules on dendritic cells in metastatic tumor lesions. Am J Pathol 2004; 165: 1853-63. doi: 10.1016/S0002-9440(10)63238-5GerliniGTun-KyiADudliCBurgGPimpinelliNNestleFOMetastatic melanoma secreted IL-10 down-regulates CD1 molecules on dendritic cells in metastatic tumor lesionsAm J Pathol200416518536310.1016/S0002-9440(10)63238-5Open DOISearch in Google Scholar

Gerlini G, Di Gennaro P, Mariotti G, Urso C, Chiarugi A, Pimpinelli N, et al. Indoleamine 2,3-dioxygenase cells correspond to the BDCA2 plasmacytoid dendritic cells in human melanoma sentinel nodes. J Investig Dermatol 2010; 130: 898-901. doi: 10.1038/jid.2009.307GerliniGDiGennaro PMariottiGUrsoCChiarugiAPimpinelliNet alIndoleamine 2,3-dioxygenase cells correspond to the BDCA2 plasmacytoid dendritic cells in human melanoma sentinel nodesJ Investig Dermatol201013089890110.1038/jid.2009.30719829303Open DOISearch in Google Scholar

Geboers B, Scheffer HJ, Graybill PM, Ruarus AH, Nieuwenhuizen S, Puijk RS, et al. High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy. Radiology 2020; 295: 192190. doi: 10.1148/radiol.2020192190GeboersBSchefferHJGraybillPMRuarusAHNieuwenhuizenSPuijkRSet alHigh-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapyRadiology202029519219010.1148/radiol.202019219032208094Open DOISearch in Google Scholar

Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J Cell Mol Med 2019; 23: 4854-65. doi: 10.1111/jcmm.14356ZhouJWangGChenYWangHHuaYCaiZImmunogenic cell death in cancer therapy: Present and emerging inducersJ Cell Mol Med20192348546510.1111/jcmm.14356665338531210425Open DOISearch in Google Scholar

Alnaggar M, Lin M, Mesmar A, Liang S, Qaid A, Xu K, et al. Allogenic natural killer cell immunotherapy combined with irreversible electroporation for stage iv hepatocellular carcinoma: survival outcome. Cell Physiol Biochem 2018; 48: 1882-93. doi: 10.1159/000492509AlnaggarMLinMMesmarALiangSQaidAXuKet alAllogenic natural killer cell immunotherapy combined with irreversible electroporation for stage iv hepatocellular carcinoma: survival outcomeCell Physiol Biochem20184818829310.1159/00049250930092590Open DOISearch in Google Scholar

Yang Y, Qin Z, Du D, Wu Y, Qiu S, Mu F, et al. Safety and short-term efficacy of irreversible electroporation and allogenic natural killer cell immunotherapy combination in the treatment of patients with unresectable primary liver cancer. Cardiovasc Intervent Radiol 2019; 42: 48-59. doi: 10.1007/s00270-018-2069-yYangYQinZDuDWuYQiuSMuFet alSafety and short-term efficacy of irreversible electroporation and allogenic natural killer cell immunotherapy combination in the treatment of patients with unresectable primary liver cancerCardiovasc Intervent Radiol201942485910.1007/s00270-018-2069-y626767930151798Open DOISearch in Google Scholar

Lin M, Liang S, Wang X, Liang Y, Zhang M, Chen J. Percutaneous irreversible electroporation combined with allogeneic natural killer cell immunotherapy for patients with unresectable (Stage III/IV) pancreatic cancer: a promising treatment. J Cancer Res Clin Oncol 2017; 143: 2607-18. doi: 10.1007/s00432-017-2513-4LinMLiangSWangXLiangYZhangMChenJPercutaneous irreversible electroporation combined with allogeneic natural killer cell immunotherapy for patients with unresectable (Stage III/IV) pancreatic cancer: a promising treatmentJ Cancer Res Clin Oncol201714326071810.1007/s00432-017-2513-428871458Open DOISearch in Google Scholar

Diercks GFH, Kluin PM. Basic principles of the immune system and autoimmunity. In: Jonkman FM, editor. Autoimmune bullous diseases. Heidelberg: Springer International Publishing; 2016. p. 3-12. doi: 10.1007/978-3-319-23754-1_1DiercksGFHKluinPMBasic principles of the immune system and autoimmunityInJonkmanFMeditorAutoimmune bullous diseasesHeidelbergSpringer International Publishing2016p31210.1007/978-3-319-23754-1_1Open DOISearch in Google Scholar

Kellie S, Al-Mansour Z. Overview of the immune system. In: Skwarczynski M, Toth I, editors. Micro- and nanotechnology in vaccine development Elsevier Inc; 2017. p. 63-81. doi: 10.1016/B978-0-323-39981-4.00004-XKellieSAl-MansourZOverview of the immune systemInSkwarczynskiMTothIeditorsMicro- and nanotechnology in vaccine developmentElsevier Inc2017p638110.1016/B978-0-323-39981-4.00004-XOpen DOISearch in Google Scholar

Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010; 125: S3. doi: 10.1016/j.jaci.2009.12.980ChaplinDDOverview of the immune responseJ Allergy Clin Immunol2010125S310.1016/j.jaci.2009.12.980292343020176265Open DOISearch in Google Scholar

Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw 2018; 18: e27. doi: 10.4110/in.2018.18.e27RohJSSohnDHDamage-associated molecular patterns in inflammatory diseasesImmune Netw201818e2710.4110/in.2018.18.e27611751230181915Open DOISearch in Google Scholar

Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13: 54-61. doi: 10.1038/nm1523ObeidMTesniereAGhiringhelliFFimiaGMApetohLPerfettiniJLet alCalreticulin exposure dictates the immunogenicity of cancer cell deathNat Med200713546110.1038/nm152317187072Open DOISearch in Google Scholar

Kato J, Svensson CI. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog Mol Biol Transl Sci 2015; 131: 251-79. doi: 10.1016/bs.pmbts.2014.11.014KatoJSvenssonCIRole of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent painProg Mol Biol Transl Sci20151312517910.1016/bs.pmbts.2014.11.01425744676Open DOISearch in Google Scholar

Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007; 81:1-5. doi: 10.1189/jlb.0306164BianchiMEDAMPs, PAMPs and alarmins: all we need to know about dangerJ Leukoc Biol2007811510.1189/jlb.0306164Open DOISearch in Google Scholar

Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M. Science in medicine Alarmins : awaiting a clinical response. J Clin Invest 2012; 122: 2711-9. doi: 10.1172/JCI62423.tificationChanJKRothJOppenheimJJTraceyKJVoglTFeldmannMScience in medicine Alarmins : awaiting a clinical responseJ Clin Invest20121222711910.1172/JCI62423.tificationOpen DOISearch in Google Scholar

Rock KL, Lai JJ, Kono H. Innate and adaptive immune responses to cell death. Immunol Rev 2011; 243: 191-205. doi: 10.1111/j.1600-065X.2011.01040.xRockKLLaiJJKonoHInnate and adaptive immune responses to cell deathImmunol Rev201124319120510.1111/j.1600-065X.2011.01040.xOpen DOISearch in Google Scholar

Stoecklein VM, Osuka A, Lederer JA. Trauma equals danger - damage control by the immune system. J Leukoc Biol 2012; 92: 539-51. doi: 10.1189/jlb.0212072StoeckleinVMOsukaALedererJATrauma equals danger - damage control by the immune systemJ Leukoc Biol2012925395110.1189/jlb.0212072Open DOISearch in Google Scholar

Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012; 18: 1028-40. doi: 10.1038/nm.2807WynnTARamalingamTRMechanisms of fibrosis: therapeutic translation for fibrotic diseaseNat Med20121810284010.1038/nm.2807Open DOISearch in Google Scholar

Straino S, Di Carlo A, Mangoni A, De Mori R, Guerra L, Maurelli R. High-mobility group box 1 protein in human and murine skin: involvement in wound healing. J Invest Dermatol 2008; 128: 1545-53. doi: 10.1038/ sj.jid.5701212StrainoSDiCarlo AMangoniADeMori RGuerraLMaurelliRHigh-mobility group box 1 protein in human and murine skin: involvement in wound healingJ Invest Dermatol200812815455310.1038/sj.jid.5701212Open DOISearch in Google Scholar

Yang S, Xu L, Yang T, Wang F. High-mobility group box-1 and its role in angiogenesis. J Leukoc Biol 2014; 95: 563-74. doi: 10.1189/jlb.0713412YangSXuLYangTWangFHigh-mobility group box-1 and its role in angiogenesisJ Leukoc Biol2014955637410.1189/jlb.0713412Open DOISearch in Google Scholar

Zampell JC, Yan A, Avraham T, Andrade V, Malliaris S, Aschen S, et al. Temporal and spatial patterns of endogenous danger signal expression after wound healing and in response to lymphedema. Am J Physiol Cell Physiol 2011; 300: 1107-21. doi: 10.1152/ajpcell.00378.2010ZampellJCYanAAvrahamTAndradeVMalliarisSAschenSet alTemporal and spatial patterns of endogenous danger signal expression after wound healing and in response to lymphedemaAm J Physiol Cell Physiol201130011072110.1152/ajpcell.00378.2010Open DOISearch in Google Scholar

Duffield JS, Lupher M, Thannickal VJ, Wynn TA. Host responses in tissue repair and fibrosis. Annu Rev Pathol 2013; 8: 241-76. doi: 10.1146/annurevpathol-020712-163930DuffieldJSLupherMThannickalVJWynnTAHost responses in tissue repair and fibrosisAnnu Rev Pathol201382417610.1146/annurevpathol-020712-163930Open DOISearch in Google Scholar

Rols MP, Teissié J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 1990; 58: 1089-98. doi: 10.1016/S0006-3495(90)82451-6RolsMPTeissiéJElectropermeabilization of mammalian cells. Quantitative analysis of the phenomenonBiophys J19905810899810.1016/S0006-3495(90)82451-6Open DOISearch in Google Scholar

Sweeney DC, Reberšek M, Dermol J, Rems L, Miklavčič D, Davalos RV. Quantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulses. Biochim Biophys Acta Biomembr 2016; 1858: 2689-98. doi: 10.1016/j.bbamem.2016.06.024SweeneyDCReberšekMDermolJRemsLMiklavčičDDavalosRVQuantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulsesBiochim Biophys Acta Biomembr2016185826899810.1016/j.bbamem.2016.06.024Open DOISearch in Google Scholar

Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods – an overview. Bioelectrochemistry 2018; 120: 166-82. doi: 10.1016/j.bioelechem.2017.12.005BatistaNapotnik TMiklavčičDIn vitro electroporation detection methods – an overviewBioelectrochemistry20181201668210.1016/j.bioelechem.2017.12.005Open DOISearch in Google Scholar

Scuderi M, Rebersek M, Miklavcic D, Dermol-Cerne J. The use of high-frequency short bipolar pulses in cisplatin electrochemotherapy in vitro. Radiol Oncol 2019; 53: 194-205. doi: 10.2478/raon-2019-0025ScuderiMRebersekMMiklavcicDDermol-CerneJThe use of high-frequency short bipolar pulses in cisplatin electrochemotherapy in vitroRadiol Oncol20195319420510.2478/raon-2019-0025Open DOISearch in Google Scholar

O’Brien MA, Power DG. Clover AJP, Bird B, Soden DM, Forde PF. Local tumour ablative therapies: opportunities for maximising immune engagement and activation. Biochim Biophys Acta 2014; 184: 510-23. doi: 10.1016/j.bbcan.2014.09.005O’BrienMAPowerDGCloverAJPBirdBSodenDMFordePFLocal tumour ablative therapies: opportunities for maximising immune engagement and activationBiochim Biophys Acta20141845102310.1016/j.bbcan.2014.09.005Open DOISearch in Google Scholar

Babiuk S, Baca-Estrada ME, Foldvari M, Middleton DM, Rabussay D, Widera G, et al. Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J Biotechnol 2004; 110: 1-10. doi: 10.1016/j.jbiotec.2004.01.015BabiukSBaca-EstradaMEFoldvariMMiddletonDMRabussayDWideraGet alIncreased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccinesJ Biotechnol200411011010.1016/j.jbiotec.2004.01.015Open DOISearch in Google Scholar

Roos AK, Moreno S, Leder C, Pavlenko M, King A, Pisa P. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol Ther 2006; 13: 320-7. doi: 10.1016/j.ymthe.2005.08.005RoosAKMorenoSLederCPavlenkoMKingAPisaPEnhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporationMol Ther200613320710.1016/j.ymthe.2005.08.005Open DOISearch in Google Scholar

Chiarella P, Massi E, De Robertis M, Sibilio A, Parrella P, Fazio VM, et al. Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin Biol Ther 2008; 8: 1645-57. doi: 10.1517/14712598.8.11.1645ChiarellaPMassiEDe RobertisMSibilioAParrellaPFazioVMet alElectroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administrationExpert Opin Biol Ther2008816455710.1517/14712598.8.11.1645Open DOISearch in Google Scholar

Bessis N, Garcia Cozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 2004; 11(Suppl 1): S10-7.. doi: 10.1038/sj.gt.3302364BessisNGarciaCozar FJBoissierMCImmune responses to gene therapy vectors: influence on vector function and effector mechanismsGene Ther200411Suppl 1S10710.1038/sj.gt.3302364Open DOISearch in Google Scholar

Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther 2020; 28: 709-22. doi: 10.1016/j.ymthe.2020.01.001ShirleyJLdeJong YPTerhorstCHerzogRWImmune responses to viral gene therapy vectorsMol Ther2020287092210.1016/j.ymthe.2020.01.001Open DOISearch in Google Scholar

Rols MP, Teissié J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 1990; 58: 1089-98. doi: 10.1016/S0006-3495(90)82451-6RolsMPTeissiéJElectropermeabilization of mammalian cellsQuantitative analysis of the phenomenon. Biophys J19905810899810.1016/S0006-3495(90)82451-6Open DOISearch in Google Scholar

Fan F, Wood KV. Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol 2007; 5: 127-36. doi: 10.1089/adt.2006.053FanFWoodKVBioluminescent assays for high-throughput screeningAssay Drug Dev Technol200751273610.1089/adt.2006.053Open DOISearch in Google Scholar

Wood KV. The bioluminescence advantage. [cited 2020 May 12]. Available at: https://worldwide.promega.com/resources/pubhub/enotes/the-bioluminescence-advantage/WoodKVThe bioluminescence advantage[cited 2020 May 12]. Available athttps://worldwide.promega.com/resources/pubhub/enotes/the-bioluminescence-advantage/Search in Google Scholar

Falzoni S, Donvito G, Di Virgilio F. Detecting adenosine triphosphate in the pericellular space. Interface Focus 2013; 3: 2012. doi: 10.1089/adt.2006.053FalzoniSDonvitoGDiVirgilio FDetecting adenosine triphosphate in the pericellular spaceInterface Focus20133201210.1089/adt.2006.053Open DOISearch in Google Scholar

Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, Goldberg MP, et al. Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 2003; 116: 2099-110. doi: 10.1242/jcs.00420WangXQXiaoAYShelineCHyrcKYangAGoldbergMPet alApoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stressJ Cell Sci2003116209911010.1242/jcs.00420Open DOISearch in Google Scholar

Hansen EL, Sozer EB, Romeo S, Frandsen SK, Vernier PT, Gehl J. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electriamount strength. PLoS One 2015; 10: e0122973. doi: 10.1371/journal.pone.0122973HansenELSozerEBRomeoSFrandsenSKVernierPTGehlJDose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electriamount strengthPLoS One201510e012297310.1371/journal.pone.0122973Open DOISearch in Google Scholar

Ashdown CP, Johns SC, Aminov E, Unanian M, Connacher W, Friend J, et al. Pulsed low-frequency magnetic fields induce tumor membrane disruption and altered cell viability. Biophys J 2020; 118: 1552-63. doi: 10.1016/j.bpj.2020.02.013AshdownCPJohnsSCAminovEUnanianMConnacherWFriendJet alPulsed low-frequency magnetic fields induce tumor membrane disruption and altered cell viabilityBiophys J202011815526310.1016/j.bpj.2020.02.013Open DOISearch in Google Scholar

Krause KH, Michalak M. Calreticulin. Cell 1997; 88: 439-43. doi: 10.1016/s0092-8674(00)81884-xKrauseKHMichalakMCalreticulinCell1997884394310.1016/s0092-8674(00)81884-xOpen DOISearch in Google Scholar

Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 2005; 37: 260-6. doi: 10.1016/j.biocel.2004.02.030GelebartPOpasMMichalakMCalreticulin, a Ca2+-binding chaperone of the endoplasmic reticulumInt J Biochem Cell Biol200537260610.1016/j.biocel.2004.02.03015474971Open DOISearch in Google Scholar

Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. Embo J 2009; 28: 578-90. doi: 10.1038/emboj.2009.1PanaretakisTKeppOBrockmeierUTesniereABjorklundACChapmanDCet alMechanisms of pre-apoptotic calreticulin exposure in immunogenic cell deathEmbo J2009285789010.1038/emboj.2009.1265758319165151Open DOISearch in Google Scholar

Kranz P, Neumann F, Wolf A, Classen F, Pompsch M, Ocklenburg T, et al. PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR). Cell Death Dis 2017; 8: e2986. doi: 10.1038/cddis.2017.369KranzPNeumannFWolfAClassenFPompschMOcklenburgTet alPDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR)Cell Death Dis20178e298610.1038/cddis.2017.369559655728796255Open DOISearch in Google Scholar

Hou W, Zhang Q, Yan Z, Chen R, Zeh HJ, Kang R, et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 2013; 4: e966. doi: 10.1038/cddis.2013.493HouWZhangQYanZChenRZehHJKangRet alStrange attractors: DAMPs and autophagy link tumor cell death and immunityCell Death Dis20134e96610.1038/cddis.2013.493387756324336086Open DOISearch in Google Scholar

Pisetsky DS. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunolog 2012; 144: 32-40. doi: 10.1016/j.clim.2012.04.006PisetskyDSThe origin and properties of extracellular DNA: from PAMP to DAMPClin Immunolog2012144324010.1016/j.clim.2012.04.006Open DOISearch in Google Scholar

Shinohara K, Toné S, Ejima T, Ohigashi T, Ito A. Quantitative distribution of DNA, RNA, histone and proteins other than histone in mammalian cells, nuclei and a chromosome at high resolution observed by scanning transmission soft x-ray microscopy (stxm). Cells 2019; 8: 164. doi: 10.3390/cells8020164ShinoharaKTonéSEjimaTOhigashiTItoAQuantitative distribution of DNA, RNA, histone and proteins other than histone in mammalian cells, nuclei and a chromosome at high resolution observed by scanning transmission soft x-ray microscopy (stxm)Cells2019816410.3390/cells8020164Open DOISearch in Google Scholar

Mackenzie RJ. DNA vs. RNA – 5 key differences and comparison. Technology Networks. [cited 2020 Jun 9]. Available at: https://www.technologynet-works.com/genomics/lists/what-are-the-key-differences-between-dna-and-rna-296719MackenzieRJDNA vs. RNA – 5 key differences and comparison. Technology Networks[cited 2020 Jun 9]. Available athttps://www.technologynet-works.com/genomics/lists/what-are-the-key-differences-between-dna-and-rna-296719Search in Google Scholar

Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425: 516-21. doi: 10.1038/nature01991ShiYEvansJERockKLMolecular identification of a danger signal that alerts the immune system to dying cellsNature20034255162110.1038/nature01991Open DOISearch in Google Scholar

Shi Y, Galusha SA, Rock KL. Cutting Edge: elimination of an endogenous adjuvant reduces the activation of cd8 t lymphocytes to transplanted cells and in an autoimmune diabetes model. J Immunol 2006; 176: 3905-8. doi: 10.4049/jimmunol.176.7.3905ShiYGalushaSARockKLCutting Edge: elimination of an endogenous adjuvant reduces the activation of cd8 t lymphocytes to transplanted cells and in an autoimmune diabetes modelJ Immunol20061763905810.4049/jimmunol.176.7.3905Open DOISearch in Google Scholar

Miklavcic D, Semrov D, Mekid H, Mir LM. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and fo: DNA electrotransfer for gene therapy. Biochim Biophys Acta Gen Subj 2000; 1523: 73-83. doi: 10.1016/S0304-4165(00)00101-XMiklavcicDSemrovDMekidHMirLMA validated model of in vivo electric field distribution in tissues for electrochemotherapy and fo: DNA electrotransfer for gene therapyBiochim Biophys Acta Gen Subj20001523738310.1016/S0304-4165(00)00101-XOpen DOISearch in Google Scholar

Zmuc J, Gasljevic G, Sersa G, Edhemovic I, Boc N, Seliskar A, et al. Large liver blood vessels and bile ducts are not damaged by electrochemotherapy with bleomycin in pigs. Sci Rep 2019; 9: 3649. doi: 10.1038/s41598-019-40395-yZmucJGasljevicGSersaGEdhemovicIBocNSeliskarAet alLarge liver blood vessels and bile ducts are not damaged by electrochemotherapy with bleomycin in pigsSci Rep20199364910.1038/s41598-019-40395-y640338130842517Open DOISearch in Google Scholar

eISSN:
1581-3207
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology