Zacytuj

Joiner MC, Marples B, Lambin P, Short SC, Turesson I. Low-dose hypersensitivity: Current status and possible mechanisms. Int J Radiat Oncol Biol Phys 2001; 49: 379-89. doi: 10.1016/S0360-3016(00)01471-1JoinerMCMarplesBLambinPShortSCTuressonILow-dose hypersensitivity: Current status and possible mechanismsInt J Radiat Oncol Biol Phys2001493798910.1016/S0360-3016(00)01471-1Open DOISearch in Google Scholar

Dai X, Tao D, Wu H, Cheng J. Low dose hyper-radiosensitivity in human lung cancer cell line A549 and its possible mechanisms. J Huazhong Univ Sci Technolog Med Sci 2009; 29: 101-6. doi: 10.1007/s11596-009-0122-4DaiXTaoDWuHChengJLow dose hyper-radiosensitivity in human lung cancer cell line A549 and its possible mechanismsJ Huazhong Univ Sci Technolog Med Sci200929101610.1007/s11596-009-0122-4Open DOISearch in Google Scholar

Martin LM, Marples B, Lynch TH, Hollywood D, Marignol L. Exposure to low dose ionising radiation: Molecular and clinical consequences. Cancer Lett 2014; 349: 98-106. doi: 10.1016/j.canlet.2013.12.015MartinLMMarplesBLynchTHHollywoodDMarignolLExposure to low dose ionising radiation: Molecular and clinical consequencesCancer Lett20143499810610.1016/j.canlet.2013.12.015Open DOISearch in Google Scholar

Schoenherr D, Krueger SA, Martin L, Marignol L, Wilson GD, Marples B. Determining if low dose hyper-radiosensitivity (HRS) can be exploited to provide a therapeutic advantage: A cell line study in four glioblastoma multiforme (GBM) cell lines. Int J Radiat Biol 2013; 89: 1009-16. doi: 10.3109/09553002.2013.825061SchoenherrDKruegerSAMartinLMarignolLWilsonGDMarplesBDetermining if low dose hyper-radiosensitivity (HRS) can be exploited to provide a therapeutic advantage: A cell line study in four glioblastoma multiforme (GBM) cell linesInt J Radiat Biol20138910091610.3109/09553002.2013.825061Open DOISearch in Google Scholar

Guirado D, Aranda M, Ortiz M, Mesa J a, Zamora LI, Amaya E, et al. Low-dose radiation hyper-radiosensitivity in multicellular tumour spheroids. Br J Radiol 2012; 85: 1398-406. doi: 10.1259/bjr/33201506GuiradoDArandaMOrtizMMesaJ aZamoraLIAmayaEet alLow-dose radiation hyper-radiosensitivity in multicellular tumour spheroidsBr J Radiol201285139840610.1259/bjr/33201506Open DOISearch in Google Scholar

Harney J, Short SC, Shah N, Joiner M, Saunders MI. Low dose hyper-radiosensitivity in metastatic tumors. Int J Radiat Oncol Biol Phys 2004; 59: 1190-5. doi: 10.1016/j.ijrobp.2003.12.029HarneyJShortSCShahNJoinerMSaundersMILow dose hyper-radiosensitivity in metastatic tumorsInt J Radiat Oncol Biol Phys2004591190510.1016/j.ijrobp.2003.12.029Open DOISearch in Google Scholar

Wouters BG, Sy AM, Skarsgard LD. Low-dose hypersensitivity and increased radioresistance in a panel of human tumor cell lines with different radiosensitivity. Radiat Res 1996; 146: 399-413. doi: 10.2307/3579302WoutersBGSyAMSkarsgardLDLow-dose hypersensitivity and increased radioresistance in a panel of human tumor cell lines with different radiosensitivityRadiat Res199614639941310.2307/3579302Open DOISearch in Google Scholar

Joiner MC, Lambin P, Malaise EP, Robson T, Arrand JE, Skov K a., et al. Hypersensitivity to very-low single radiation doses: Its relationship to the adaptive response and induced radioresistance. Mutat Res 1996; 358: 171-83. doi: 10.1016/S0027-5107(96)00118-2JoinerMCLambinPMalaiseEPRobsonTArrandJESkovK a.et alHypersensitivity to very-low single radiation doses: Its relationship to the adaptive response and induced radioresistanceMutat Res19963581718310.1016/S0027-5107(96)00118-2Open DOISearch in Google Scholar

Marples B, Collis SJ. Low-dose hyper-radiosensitivity: past, present, and future. Int J Radiat Oncol Biol Phys 2008; 70: 1310-8. doi: 10.1016/j.ijrobp.2007.11.071MarplesBCollisSJLow-dose hyper-radiosensitivity: past, present, and futureInt J Radiat Oncol Biol Phys2008701310810.1016/j.ijrobp.2007.11.071Open DOISearch in Google Scholar

Wykes SM, Piasentin E, Joiner MC, Wilson GD, Marples B. Low-dose hyper-radiosensitivity is not caused by a failure to recognize DNA double-strand breaks. Radiat Res 2006; 165: 516-24. doi: 10.1667/RR3553.1WykesSMPiasentinEJoinerMCWilsonGDMarplesBLow-dose hyper-radiosensitivity is not caused by a failure to recognize DNA double-strand breaksRadiat Res20061655162410.1667/RR3553.1Open DOISearch in Google Scholar

Mitchell CR, Folkard M, Joiner MC. Effects of exposure to low-dose-rate 60 Co gamma rays on human tumor cells in vitro. Radiat Res 2006; 158: 311-8. doi: 10.1667/0033-7587(2002)158[0311:eoetld]2.0.co;2MitchellCRFolkardMJoinerMCEffects of exposure to low-dose-rate 60 Co gamma rays on human tumor cells in vitroRadiat Res2006158311810.1667/0033-75872002158[0311:eoetld]2.0.co;2Open DOISearch in Google Scholar

Matsuya Y, McMahon SJ, Tsutsumi K, Sasaki K, Okuyama G, Yoshii Y, et al. Investigation of dose-rate effects and cell-cycle distribution under protracted exposure to ionizing radiation for various dose-rates. Sci Rep 2018; 8: 1-14. doi: 10.1038/s41598-018-26556-5MatsuyaYMcMahonSJTsutsumiKSasakiKOkuyamaGYoshiiYet alInvestigation of dose-rate effects and cell-cycle distribution under protracted exposure to ionizing radiation for various dose-ratesSci Rep2018811410.1038/s41598-018-26556-5Open DOISearch in Google Scholar

Tomé W a., Howard SP. On the possible increase in local tumour control probability for gliomas exhibiting low dose hyper-radiosensitivity using a pulsed schedule. Br J Radiol 2007; 80: 32-7. doi: 10.1259/bjr/15764945ToméW a.HowardSPOn the possible increase in local tumour control probability for gliomas exhibiting low dose hyper-radiosensitivity using a pulsed scheduleBr J Radiol20078032710.1259/bjr/15764945Open DOISearch in Google Scholar

Dilworth JT, Krueger S a., Dabjan M, Grills IS, Torma J, Wilson GD, et al. Pulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: Effects on vascularization and tumor control. Radiother Oncol 2013; 108: 149-54. doi: 10.1016/j.radonc.2013.05.022DilworthJTKruegerS a.DabjanMGrillsISTormaJWilsonGDet alPulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: Effects on vascularization and tumor controlRadiother Oncol20131081495410.1016/j.radonc.2013.05.022Open DOISearch in Google Scholar

Park SS, Chunta JL, Robertson JM, Martinez AA, Oliver Wong CY, Amin M, et al. MicroPET/CT imaging of an orthotopic model of human glioblastoma multiforme and evaluation of pulsed low-dose irradiation. Int J Radiat Oncol Biol Phys 2011; 80: 885-92. doi: 10.1016/j.ijrobp.2011.01.045ParkSSChuntaJLRobertsonJMMartinezAAOliverWong CYAminMet alMicroPET/CT imaging of an orthotopic model of human glioblastoma multiforme and evaluation of pulsed low-dose irradiationInt J Radiat Oncol Biol Phys2011808859210.1016/j.ijrobp.2011.01.045Open DOISearch in Google Scholar

Adkison JB, Tomé W, Seo S, Richards GM, Robins HI, Rassmussen K, et al. Reirradiation of large-volume recurrent glioma with pulsed reduced-dose-rate radiotherapy. Int J Radiat Oncol Biol Phys 2011; 79: 835-41. doi: 10.1016/j.ijrobp.2009.11.058AdkisonJBToméWSeoSRichardsGMRobinsHIRassmussenKet alReirradiation of large-volume recurrent glioma with pulsed reduced-dose-rate radiotherapyInt J Radiat Oncol Biol Phys2011798354110.1016/j.ijrobp.2009.11.058Open DOISearch in Google Scholar

Richards GM, Tomé WA, Robins HI, Stewart JA, Welsh JS, Mahler PA, et al. Pulsed reduced dose-rate radiotherapy: A novel locoregional retreatment strategy for breast cancer recurrence in the previously irradiated chest wall, axilla, or supraclavicular region. Breast Cancer Res Treat 2009; 114: 307-13. doi: 10.1007/s10549-008-9995-3RichardsGMToméWARobinsHIStewartJAWelshJSMahlerPAet alPulsed reduced dose-rate radiotherapy: A novel locoregional retreatment strategy for breast cancer recurrence in the previously irradiated chest wall, axilla, or supraclavicular regionBreast Cancer Res Treat20091143071310.1007/s10549-008-9995-3Open DOISearch in Google Scholar

Chan JL, Lee SW, Fraass BA, Normolle DP, Greenberg HS, Junck LR, et al. Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 2002; 20: 1635-42. doi: 10.1016/s0169-5002(97)90162-8ChanJLLeeSWFraassBANormolleDPGreenbergHSJunckLRet alSurvival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapyJ Clin Oncol20022016354210.1016/s0169-5002(97)90162-8Open DOISearch in Google Scholar

Strojan P, Corry J, Eisbruch A, Vermorken JB, Mendenhall WM, Lee AWM, et al. Recurrent and second primary squamous cell carcinoma of the head and neck: when and how to reirradiate. Head Neck 2015; 37: 134-50. doi: 10.1002/hed.23542StrojanPCorryJEisbruchAVermorkenJBMendenhallWMLeeAWMet alRecurrent and second primary squamous cell carcinoma of the head and neck: when and how to reirradiateHead Neck2015371345010.1002/hed.23542Open DOISearch in Google Scholar

Blanchard P, Baujat B, Holostenco V, Bourredjem A, Baey C, Bourhis J, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): A comprehensive analysis by tumour site. Radiother Oncol 2011; 100: 33-40. doi: 10.1016/j.radonc.2011.05.036BlanchardPBaujatBHolostencoVBourredjemABaeyCBourhisJet alMeta-analysis of chemotherapy in head and neck cancer (MACH-NC): A comprehensive analysis by tumour siteRadiother Oncol2011100334010.1016/j.radonc.2011.05.036Open DOISearch in Google Scholar

Boehringer-Wyss N, Clarkson SG, Allal AS. No benefits of ultrafractionation in two head-and-neck cancer cell lines with different inherent radiosensitivity. Int J Radiat Oncol Biol Phys 2002; 52: 1099-103. doi: 10.1016/S0360-3016(01)02793-6Boehringer-WyssNClarksonSGAllalASNo benefits of ultrafractionation in two head-and-neck cancer cell lines with different inherent radiosensitivityInt J Radiat Oncol Biol Phys200252109910310.1016/S0360-3016(01)02793-6Open DOISearch in Google Scholar

Marples B. Is low-dose hyper-radiosensitivity a measure of G2-phase cell radiosensitivity? Cancer Metastasis Rev 2004; 23: 197-207. doi: 10.1023/B: CANC.0000031761.61361.2aMarplesBIs low-dose hyper-radiosensitivity a measure of G2-phase cell radiosensitivity?Cancer Metastasis Rev20042319720710.1023/B:CANC.0000031761.61361.2aOpen DOISearch in Google Scholar

Leonard BE. Thresholds and transitions for activation of cellular radioprotective mechanisms - Correlations between HRS/IRR and the “inverse” dose-rate effect. Int J Radiat Biol 2007; 83: 479-89. doi: 10.1080/09553000701370902LeonardBEThresholds and transitions for activation of cellular radioprotective mechanisms - Correlations between HRS/IRR and the “inverse” dose-rate effectInt J Radiat Biol2007834798910.1080/09553000701370902Open DOISearch in Google Scholar

Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci 2016; 73: 2829-50. doi: 10.1007/ s00018-016-2130-4MattSHofmannTGThe DNA damage-induced cell death response: a roadmap to kill cancer cellsCell Mol Life Sci20167328295010.1007/s00018-016-2130-4Open DOISearch in Google Scholar

Pavlopoulou A, Bagos PG, Koutsandrea V, Georgakilas AG. Molecular determinants of radiosensitivity in normal and tumor tissue: A bioinformatic approach. Cancer Lett 2017; 403: 37-47. doi: 10.1016/j.canlet.2017.05.023PavlopoulouABagosPGKoutsandreaVGeorgakilasAGMolecular determinants of radiosensitivity in normal and tumor tissue: A bioinformatic approachCancer Lett2017403374710.1016/j.canlet.2017.05.023Open DOISearch in Google Scholar

Todorovic V, Prevc A, Zakelj MN, Savarin M, Brozic A, Groselj B, et al. Mechanisms of different response to ionizing irradiation in isogenic head and neck cancer cell lines. Radiat Oncol 2019; 14: 1-20. doi: 10.1186/ s13014-019-1418-6TodorovicVPrevcAZakeljMNSavarinMBrozicAGroseljBet alMechanisms of different response to ionizing irradiation in isogenic head and neck cancer cell linesRadiat Oncol20191412010.1186/s13014-019-1418-6Open DOISearch in Google Scholar

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-8. doi: 10.1006/meth.2001.1262LivakKJSchmittgenTDAnalysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) MethodMethods200125402810.1006/meth.2001.1262Open DOISearch in Google Scholar

Piotrowski I, Kulcenty K, Suchorska WM, Skrobała A, Skórska M, Kruszyna-Mochalska M, et al. Carcinogenesis induced by low-dose radiation. Radiol Oncol 2017; 51: 369-77. doi: 10.1515/raon-2017-0044PiotrowskiIKulcentyKSuchorskaWMSkrobałaASkórskaMKruszyna-MochalskaMet alCarcinogenesis induced by low-dose radiationRadiol Oncol2017513697710.1515/raon-2017-0044Open DOISearch in Google Scholar

Lacas B, Bourhis J, Overgaard J, Zhang Q, Grégoire V, Nankivell M, et al. Role of radiotherapy fractionation in head and neck cancers (MARCH): an updated meta-analysis. Lancet Oncol 2017; 18: 1221-37. doi: 10.1016/ S1470-2045(17)30458-8LacasBBourhisJOvergaardJZhangQGrégoireVNankivellMet alRole of radiotherapy fractionation in head and neck cancers (MARCH): an updated meta-analysisLancet Oncol20171812213710.1016/S1470-2045(17)30458-8Open DOISearch in Google Scholar

Shuryak I, Hall EJ, Brenner DJ. Optimized hypofractionation can markedly improve tumor control and decrease late effects for head and neck cancer. Int J Radiat Oncol Biol Phys 2019; 104: 272-8. doi: 10.1016/j.ijrobp.2019.02.025ShuryakIHallEJBrennerDJOptimized hypofractionation can markedly improve tumor control and decrease late effects for head and neck cancerInt J Radiat Oncol Biol Phys2019104272810.1016/j.ijrobp.2019.02.025Open DOISearch in Google Scholar

Li J, Zhao Z, Du G, Dai T, Zhen X, Cai H, et al. Safety and efficacy of pulsed low-dose rate radiotherapy for local recurrent esophageal squamous cell carcinoma after radiotherapy. Medicine (Baltimore) 2019; 98: 1-5. doi: 10.1097/md.0000000000016176LiJZhaoZDuGDaiTZhenXCaiHet alSafety and efficacy of pulsed low-dose rate radiotherapy for local recurrent esophageal squamous cell carcinoma after radiotherapyMedicine (Baltimore)2019981510.1097/md.0000000000016176Open DOISearch in Google Scholar

Burr AR, Robins HI, Bayliss RA, Howard SP. Pulsed reduced dose rate for reirradiation of recurrent breast cancer. Pract Radiat Oncol 2019; doi: 10.1016/j.prro.2019.09.004BurrARRobinsHIBaylissRAHowardSPPulsed reduced dose rate for reirradiation of recurrent breast cancerPract Radiat Oncol201910.1016/j.prro.2019.09.004Open DOISearch in Google Scholar

Lee CT, Dong Y, Li T, Freedman S, Anaokar J, Galloway TJ, et al. Local control and toxicity of external beam reirradiation with a pulsed low-dose-rate technique. Int J Radiat Oncol Biol Phys 2018; 100: 959-64. doi: 10.1016/j.ijrobp.2017.12.012LeeCTDongYLiTFreedmanSAnaokarJGallowayTJet alLocal control and toxicity of external beam reirradiation with a pulsed low-dose-rate techniqueInt J Radiat Oncol Biol Phys20181009596410.1016/j.ijrobp.2017.12.012Open DOISearch in Google Scholar

Terashima S, Hosokawa Y, Tsuruga E, Mariya Y, Nakamura T. Impact of time interval and dose rate on cell survival following low-dose fractionated exposures. J Radiat Res 2017; 58: 782-90. doi: 10.1093/jrr/rrx025TerashimaSHosokawaYTsurugaEMariyaYNakamuraTImpact of time interval and dose rate on cell survival following low-dose fractionated exposuresJ Radiat Res2017587829010.1093/jrr/rrx025Open DOISearch in Google Scholar

Marples B, Joiner MC. The response of chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat Res 1993; 133: 41-51. doi: 10.2307/3578255MarplesBJoinerMCThe response of chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell populationRadiat Res1993133415110.2307/3578255Open DOISearch in Google Scholar

Madas BG, Drozsdik EJ. Computational modeling of low dose hyper-radio-sensitivity and induced radioresistance applying the principle of minimum mutation load. Radiat Prot Dosimetry 2019; 183: 147-50. doi: 10.1093/rpd/ncy227MadasBGDrozsdikEJComputational modeling of low dose hyper-radio-sensitivity and induced radioresistance applying the principle of minimum mutation loadRadiat Prot Dosimetry20191831475010.1093/rpd/ncy227Open DOISearch in Google Scholar

Contreras C, Carrero G, de Vries G. A mathematical model for the effect of low-dose radiation on the G2/M transition. Bull Math Biol 2019; 81: 3998-4021. doi: 10.1007/s11538-019-00645-6ContrerasCCarreroGdeVries GA mathematical model for the effect of low-dose radiation on the G2/M transitionBull Math Biol2019813998402110.1007/s11538-019-00645-6Open DOISearch in Google Scholar

Enns L, Rasouli-Nia A, Hendzel M, Marples B, Weinfeld M. Association of ATM activation and DNA repair with induced radioresistance after low-dose irradiation. Radiat Prot Dosimetry 2015; 166: 131-6. doi: 10.1093/rpd/ncv203EnnsLRasouli-NiaAHendzelMMarplesBWeinfeldMAssociation of ATM activation and DNA repair with induced radioresistance after low-dose irradiationRadiat Prot Dosimetry2015166131610.1093/rpd/ncv203Open DOISearch in Google Scholar

Krueger S a., Wilson GD, Piasentin E, Joiner MC, Marples B. The effects of G2-phase enrichment and checkpoint abrogation on low-dose hyper-radiosensitivity. Int J Radiat Oncol Biol Phys 2010; 77: 1509-17. doi: 10.1016/j.ijrobp.2010.01.028KruegerS a.WilsonGDPiasentinEJoinerMCMarplesBThe effects of G2-phase enrichment and checkpoint abrogation on low-dose hyper-radiosensitivityInt J Radiat Oncol Biol Phys20107715091710.1016/j.ijrobp.2010.01.028Open DOISearch in Google Scholar

Krueger S a., Collis SJ, Joiner MC, Wilson GD, Marples B. Transition in survival from low-dose hyper-radiosensitivity to increased radioresistance is independent of activation of ATM SER1981 activity. Int J Radiat Oncol Biol Phys 2007; 69: 1262-71. doi: 10.1016/j.ijrobp.2007.08.012KruegerS a.CollisSJJoinerMCWilsonGDMarplesBTransition in survival from low-dose hyper-radiosensitivity to increased radioresistance is independent of activation of ATM SER1981 activityInt J Radiat Oncol Biol Phys20076912627110.1016/j.ijrobp.2007.08.012Open DOISearch in Google Scholar

Osipov AN, Pustovalova M, Grekhova A, Eremin P, Vorobyova N, Pulin A, et al. Low doses of X-rays induce prolonged and ATM-independent persistence of γH2AX foci in human gingival mesenchymal stem cells. Oncotarget 2015; 6: 27275-87. doi: 10.18632/oncotarget.4739OsipovANPustovalovaMGrekhovaAEreminPVorobyovaNPulinAet alLow doses of X-rays induce prolonged and ATM-independent persistence of γH2AX foci in human gingival mesenchymal stem cellsOncotarget20156272758710.18632/oncotarget.4739Open DOISearch in Google Scholar

Kleinsimon S, Longmuss E, Rolff J, Jäger S, Eggert A, Delebinski C, et al. GADD45A and CDKN1A are involved in apoptosis and cell cycle modulatory effects of viscumTT with further inactivation of the STAT3 pathway. Sci Rep 2018; 8: 1-14. doi: 10.1038/s41598-018-24075-xKleinsimonSLongmussERolffJJägerSEggertADelebinskiCet alGADD45A and CDKN1A are involved in apoptosis and cell cycle modulatory effects of viscumTT with further inactivation of the STAT3 pathwaySci Rep2018811410.1038/s41598-018-24075-xOpen DOISearch in Google Scholar

Yang C, Hill R, Lu X, Van Dyke T, Yin C, Hollander MC, et al. Inactivation of gadd45a sensitizes epithelial cancer cells to ionizing radiation in vivo resulting in prolonged survival. Cancer Res 2008; 68: 3579-83. doi: 10.1158/0008-5472.can-07-5533YangCHillRLuXVanDyke TYinCHollanderMCet alInactivation of gadd45a sensitizes epithelial cancer cells to ionizing radiation in vivo resulting in prolonged survivalCancer Res20086835798310.1158/0008-5472.can-07-5533Open DOISearch in Google Scholar

Liu J, Jiang G, Mao P, Zhang J, Zhang L, Liu L, et al. Down-regulation of GADD45A enhances chemosensitivity in melanoma. Sci Rep 2018; 8: 4111. doi: 10.1038/s41598-018-22484-6LiuJJiangGMaoPZhangJZhangLLiuLet alDown-regulation of GADD45A enhances chemosensitivity in melanomaSci Rep20188411110.1038/s41598-018-22484-6Open DOISearch in Google Scholar

Janiak MK, Wincenciak M, Cheda A, Nowosielska EM, Calabrese EJ. Cancer immunotherapy: how low-level ionizing radiation can play a key role. Cancer Immunol Immunother 2017; 66: 819-32. doi: 10.1007/s00262-017-1993-zJaniakMKWincenciakMChedaANowosielskaEMCalabreseEJCancer immunotherapy: how low-level ionizing radiation can play a key roleCancer Immunol Immunother2017668193210.1007/s00262-017-1993-zOpen DOISearch in Google Scholar

Chandna S, Dwarakanath BS, Khaitan D, Mathew TL, Jain V. Low-dose radiation hypersensitivity in human tumor cell lines: effects of cell-cell contact and nutritional deprivation. Radiat Res 2002; 157: 516-25. doi: 10.1667/0033-7587(2002)157[0516:ldrhih]2.0.co;2ChandnaSDwarakanathBSKhaitanDMathewTLJainVLow-dose radiation hypersensitivity in human tumor cell lines: effects of cell-cell contact and nutritional deprivationRadiat Res20021575162510.1667/0033-7587(2002)157[0516:ldrhih]2.0.co;2Open DOISearch in Google Scholar

Prevc A, Niksic Zakelj M, Kranjc S, Cemazar M, Scancar J, Kosjek T, et al. Electrochemotherapy with cisplatin or bleomycin in head and neck squamous cell carcinoma: Improved effectiveness of cisplatin in HPV-positive tumors. Bioelectrochemistry 2018; 123: 248-54. doi: 10.1016/j.bioelech-em.2018.06.004PrevcANiksicZakelj MKranjcSCemazarMScancarJKosjekTet alElectrochemotherapy with cisplatin or bleomycin in head and neck squamous cell carcinoma: Improved effectiveness of cisplatin in HPV-positive tumorsBioelectrochemistry20181232485410.1016/j.bioelech-em.2018.06.004Open DOISearch in Google Scholar

Wu C-C, Horowitz DP, Deutsch I, Rahmati R, Schecter JM, Saqi A, et al. Deescalation of radiation dose for human papillomavirus-positive oropharyngeal head and neck squamous cell carcinoma: A case report and preclinical and clinical literature review. Oncol Lett 2016; 11: 141-9. doi: 10.3892/ ol.2015.3836WuC-CHorowitzDPDeutschIRahmatiRSchecterJMSaqiAet alDeescalation of radiation dose for human papillomavirus-positive oropharyngeal head and neck squamous cell carcinoma: A case report and preclinical and clinical literature reviewOncol Lett201611141910.3892/ol.2015.3836Open DOISearch in Google Scholar

Wierzbicka M, Szyfter K, Milecki P, Składowski K, Ramlau R. The rationale for HPV-related oropharyngeal cancer de-escalation treatment strategies. Contemp Oncol 2015; 19: 313-22. doi: 10.5114/wo.2015.54389WierzbickaMSzyfterKMileckiPSkładowskiKRamlauRThe rationale for HPV-related oropharyngeal cancer de-escalation treatment strategiesContemp Oncol2015193132210.5114/wo.2015.54389Open DOISearch in Google Scholar

Kimple RJ, Harari PM. Is radiation dose reduction the right answer for HPV-positive head and neck cancer? Oral Oncol 2014; 50: 560-4. doi: 10.1016/j. oraloncology.2013.09.015KimpleRJHarariPMIs radiation dose reduction the right answer for HPV-positive head and neck cancer?Oral Oncol201450560410.1016/j.oraloncology.2013.09.015Open DOISearch in Google Scholar

Meyer JE, Finnberg NK, Chen L, Cvetkovic D, Wang B, Zhou L, et al. Tissue TGF-β expression following conventional radiotherapy and pulsed low-dose-rate radiation. Cell Cycle 2017; 16: 1171-4. doi: 10.1080/15384101.2017.1317418MeyerJEFinnbergNKChenLCvetkovicDWangBZhouLet alTissue TGF-β expression following conventional radiotherapy and pulsed low-dose-rate radiationCell Cycle2017161171410.1080/15384101.2017.1317418Open DOISearch in Google Scholar

Short SC, Kelly J, Mayes CR, Woodcock M, Joiner MC. Low-dose hypersensitivity after fractionated low-dose irradiation in vitro. Int J Radiat Biol 2001; 77: 655-64. doi: 10.1080/09553000110041326ShortSCKellyJMayesCRWoodcockMJoinerMCLow-dose hypersensitivity after fractionated low-dose irradiation in vitroInt J Radiat Biol2001776556410.1080/09553000110041326Open DOISearch in Google Scholar

Gupta S, Koru-Sengul T, Arnold SM, Devi GR, Mohiuddin M, Ahmed MM. Low-dose fractionated radiation potentiates the effects of cisplatin independent of the hyper-radiation sensitivity in human lung cancer cells. Mol Cancer Ther 2011; 10: 292-302. doi: 10.1158/1535-7163.MCT-10-0630GuptaSKoru-SengulTArnoldSMDeviGRMohiuddinMAhmedMMLow-dose fractionated radiation potentiates the effects of cisplatin independent of the hyper-radiation sensitivity in human lung cancer cellsMol Cancer Ther20111029230210.1158/1535-7163.MCT-10-0630Open DOISearch in Google Scholar

Chendil D, Oakes R, Alcock RA, Patel N, Mayhew C, Mohiuddin M, et al. Low dose fractionated radiation enhances the radiosensitization effect of paclitaxel in colorectal tumor cells with mutant p53. Cancer 2000; 89: 1893-900. doi: 10.1002/1097-0142(20001101)89:9<1893::AID-CNCR4>3.3.CO;2-2ChendilDOakesRAlcockRAPatelNMayhewCMohiuddinMet alLow dose fractionated radiation enhances the radiosensitization effect of paclitaxel in colorectal tumor cells with mutant p53Cancer200089189390010.1002/1097-0142(20001101)89:9<1893::AID-CNCR4>3.3.CO;2-2Open DOISearch in Google Scholar

Spring PM, Arnold SM, Shajahan S, Brown B, Dey S, Lele SM, et al. Low dose fractionated radiation potentiates the effects of taxotere in nude mice xenografts of squamous cell carcinoma of head and neck. Cell Cycle 2004; 3: 477-83. doi: 10.4161/cc.3.4.786SpringPMArnoldSMShajahanSBrownBDeySLeleSMet alLow dose fractionated radiation potentiates the effects of taxotere in nude mice xenografts of squamous cell carcinoma of head and neckCell Cycle200434778310.4161/cc.3.4.786Open DOISearch in Google Scholar

eISSN:
1581-3207
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology