[
Agyepong, E., Cherdantseva, Y., Reinecke, P. & Burnap, P. (2022). A systematic method for measuring the performance of a cyber security operations centre analyst. Computers & Security, 117, 102959. Available at: https://doi.org/10.1016/j.cose.2022.102959.
]Search in Google Scholar
[
Ali, G., Shah, S., & ElAffendi, M. (2025). Enhancing cybersecurity incident response: AI-driven optimization for strengthened advanced persistent threat detection. Results in Engineering, 21, 104078. Available at: https://doi.org/10.1016/j.rineng.2025.104078.
]Search in Google Scholar
[
Arrieta, A.B., et al. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115. Available at: https://doi.org/10.1016/j.inffus.2019.12.012.
]Search in Google Scholar
[
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. Available at: https://doi.org/10.1145/2939672.2939785.
]Search in Google Scholar
[
CICIDS2017 Dataset. (n.d.). Canadian Institute for Cybersecurity. Retrieved from: https://www.unb.ca/cic/datasets/ids-2017.html.
]Search in Google Scholar
[
CSE-CIC-IDS2018 Dataset. (n.d.). Canadian Institute for Cybersecurity. Retrieved from: https://www.unb.ca/cic/datasets/ids-2018.html.
]Search in Google Scholar
[
CTU-13 Botnet Dataset. (n.d.). Retrieved from: https://github.com/imfaisalmalik/CTU13-CSV-Dataset.
]Search in Google Scholar
[
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 4171-4186. Available at: https://doi.org/10.18653/v1/N19-1423.
]Search in Google Scholar
[
Forsberg, J. & Frantti, T. (2023). Technical performance metrics of a security operations center. Computers & Security, 127, 103529. Available at: https://doi.org/10.1016/j.cose.2023.103529.
]Search in Google Scholar
[
Ke, G., et al. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146-3154. Available at: https://www.researchgate.net/publication/378480234_LightGBM_A_Highly_Efficient_Gradient_Boosting_Decision_Tree.
]Search in Google Scholar
[
Le, T.D., Le-Dinh, T., & Uwizeyemungu, S. (2025). Cybersecurity analytics for the enterprise environment: A systematic literature review. Electronics, 14(11), 2252. Available at: https://doi.org/10.3390/electronics14112252.
]Search in Google Scholar
[
Li, X., Shi, W., Zhang, H., Peng, C., Wu, S., & Tong, W. (2025). The Agentic-AI core: An AI-empowered, mission-oriented core network for next-generation mobile telecommunications. Engineering, 21(6), Article 100503. Available at: https://doi.org/10.1016/j.eng.2025.06.027.
]Search in Google Scholar
[
Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2017). Network traffic classifier with convolutional and recurrent neural networks for Internet of Things. IEEE Access, 5, 18042-18050. Available at: https://doi.org/10.1109/ACCESS.2017.2747560.
]Search in Google Scholar
[
Omar, L., & Ivrissimtzis, I. (2020). Using theoretical ROC curves for analysing machine learning binary classifiers. Pattern Recognition Letters, 133, 51-58. Available at: https://doi.org/10.1016/j.patrec.2019.10.004.
]Search in Google Scholar
[
Roumeliotis, K.I., Tselikas, N.D., & Nasiopoulos, D.K. (2025). Optimizing airline review sentiment analysis: A comparative analysis of LLaMA and BERT models through fine-tuning and few-shot learning. Computers, Materials & Continua, 82(2), 2781-2798. Available at: https://doi.org/10.32604/cmc.2025.059567.
]Search in Google Scholar
[
Schesmu, T. (2024). AI-powered SOC: Automating incident response with machine learning and SOAR tools. Medium. Retrieved from: https://medium.com/@akramtalibi1902/ai-powered-soc-automating-incident-response-with-machine-learning-and-soar-tools-70ab343e9402.
]Search in Google Scholar
[
Sopan, A., Berninger, M., Mulakaluri, M., & Katakam, R. (2018). Building a machine learning model for the SOC, by the input from the SOC, and analyzing it for the SOC. Proceedings of the 15th IEEE Symposium on Visualization for Cyber Security (VizSec), Article 8709231. Available at: https://doi.org/10.1109/VIZSEC.2018.8709231.
]Search in Google Scholar
[
Sowmya, T., & Mary Anita, E.A. (2023). A comprehensive review of AI based intrusion detection system. Measurement: Sensors, 26, 100827. Available at: https://doi.org/10.1016/j.measen.2023.100827.
]Search in Google Scholar
[
Wazuh Cloud Demo. (n.d.). Wazuh Inc. Retrieved from https://demo.wazuh.com.
]Search in Google Scholar