Wong et al. [28] |
CG framework for Laplacian walk |
\sum\nolimits_{i = 0}^{m + n - 1} |i\rangle
|
1 (m, n → ∞) |
CG framework for adjacency walk |
{1 \over {\sqrt {2m}}}\sum\nolimits_{i \in {V_1}} |i\rangle + {1 \over {\sqrt {2n}}}\sum\nolimits_{i \in {V_2}} |i\rangle
|
1 (m, n → ∞) |
Rhodes and Wong [29] |
Coined DTQW |
{1 \over {\sqrt {m + n}}}\left({\sum\nolimits_{i \in {V_1}} |i\rangle \otimes {1 \over {\sqrt n}}\sum\nolimits_{j \in {V_2}} |j\rangle +} \right.\left. {\sum\nolimits_{i \in {V_2}} |i\rangle \otimes {1 \over {\sqrt m}}\sum\nolimits_{j \in {V_1}} |j\rangle} \right)
|
{m \over {m + n}}
or
{n \over {m + n}}
(and 1 for a special case) |
{1 \over {\sqrt {2mn}}}\left({\sum\nolimits_{i = 0}^{m + n - 1} |i\rangle \otimes \sum\nolimits_{j \sim i} |j\rangle} \right)
|
{1 \over 2}
(and 1 for a special case) |
Xu et al. [30] |
Coined DTQW |
{1 \over {\sqrt {2mn}}}\left({\sum\nolimits_{i = 0}^{m + n - 1} |i\rangle \otimes \sum\nolimits_{j \sim i} |j\rangle} \right)
|
≥ 1 − ɛ for any adjustable parameter ɛ |
Our work |
CTQW |
{1 \over {\sqrt m}}\sum\nolimits_{i \in {V_1}} |i\rangle
or
{1 \over {\sqrt n}}\sum\nolimits_{i \in {V_2}} |i\rangle
|
1 |