Zacytuj

Adjebli, A., Leyronas, C., Aissat, K., Nicot, P. C. (2015). Comparison of Botrytis cinerea populations collected from tomato greenhouses in Northern Algeria. J. Phytopathol., 163, 124–132. https://doi.org/10.1111/JPH.12289. Search in Google Scholar

Ahmed, A., Abdelaziz, M., Riad, A., Kamel, A. (2022). Phenotypic variability of Botrytis cinerea and Botrytis pseudocinerea isolates. Res. J. Biotechnol., 17, 20–26. Search in Google Scholar

Akinsanmi, O. A., Backhouse, D., Simpfendorfer, S., Chakraborty, S. (2008). Mycelial compatibility reactions of Australian Fusarium graminearum and F. pseudograminearum isolates compared with AFLP groupings. Plant Pathol., 57, 251–261. https://doi.org/10.1111/j.1365-3059.2007.01772.x. Search in Google Scholar

Asadollahi, M., Fekete, E., Karaffa, L., Flipphi, M., Árnyasi, M., Esmaeili, M., Váczy, K. Z., Sándor, E. (2013). Comparison of Botrytis cinerea populations isolated from two open-field cultivated host plants. Microbiol. Res., 168, 379–388. https://doi.org/10.1016/J.MICRES.2012.12.008. Search in Google Scholar

Azevedo, D. M. Q., Martins, S. D. S., Guterres, D. C., Martins, M. D., Araújo, L., Guimarães, L. M. S., Alfenas, A. C., Furtado, G. Q. (2020). Diversity, prevalence and phylogenetic positioning of Botrytis species in Brazil. Fungal Biol., 124, 940–957. https://doi.org/10.1016/J.FUNBIO.2020.08.002. Search in Google Scholar

Bankina, B., Stoddard, F.L., Kaņeps, J., Brauna-Morževska, E., Bimšteine, G., Neusa-Luca, I., Roga, A., Fridmanis, D. (2021). Botrytis four species are associated with chocolate spot disease of faba bean in Latvia. Zemdirb. Agric., 108, 297–302. https://doi.org/10.13080/z-a.2021.108.038. Search in Google Scholar

Corwin, J. A., Subedy, A., Eshbaugh, R., Kliebenstein, D. J. (2016). Expansive phenotypic landscape of Botrytis cinerea shows differential contribution of genetic diversity and plasticity. Mol. Plant-Microbe Interact., 29, 287–298. https://doi.org/10.1094/MPMI-09-15-0196-R. Search in Google Scholar

Dean, R., van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol., 13, 414–430. https://doi.org/10.1111/J.1364-3703.2011.00783.X. Search in Google Scholar

DeLong, J. A., Saito, S., Xiao, C. L., Naegele, R. P. (2020). Population genetics and fungicide resistance of Botrytis cinerea on Vitis and Prunus spp. in California. Phytopathology, 110, 694–702. https://doi.org/10.1094/PHYTO-09-19-0362-R. Search in Google Scholar

Fournier, E., Giraud, T., Albertini, C., Brygoo, Y. (2005). Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia, 97, 1251–1267. https://doi.org/10.1080/15572536.2006.11832734. Search in Google Scholar

Garfinkel, A. R. (2021). The history of Botrytis taxonomy, the rise of phylogenetics, and implications for species recognition. Phytopathology, 111, 437–454. https://doi.org/10.1094/PHYTO-06-20-0211-IA. Search in Google Scholar

Garfinkel, A. R., Coats, K. P., Sherry, D. L., Chastagner, G. A. (2019). Genetic analysis reveals unprecedented diversity of a globally-important plant pathogenic genus. Sci. Rep., 9, 6671. https://doi.org/10.1038/s41598-019-43165-y. Search in Google Scholar

Isenegger, D. A., Ades, P. K., Ford, R., Taylor, P. W. J. (2008). Status of the Botrytis cinerea species complex and microsatellite analysis of transposon types in South Asia and Australia. Fungal Divers, 29, 17–26. Search in Google Scholar

Korolev, N., Elad, Y. (2016). Vegetative Incompatibility in Botrytis. In: Fillinger, S., Elad, Y. (eds.), Botrytis–The Fungus, the Pathogen, and Its Management in Agricultural Systems. Springer: Cham, Switzerland, pp. 55–70. https://doi.org/10.1007/978-3-319-23371-0_4. Search in Google Scholar

Korolev, N., Elad, Y., Katan, T. (2008). Vegetative compatibility grouping in Botrytis cinerea using sulphate non-utilizing mutants. Eur. J. Plant Pathol., 122, 369–383. https://doi.org/10.1007/S10658-008-9301-6. Search in Google Scholar

Kranz, J. (2003). Comparative epidemiology at the systems levels host, pathogen and disease. In: Comparative Epidemiology of Plant Diseases, Springer: Berlin/Heidelberg, Germany. https://doi.org/10.1007/978-3-662-05261-7_4. Search in Google Scholar

Kuzmanovska, B., Rusevski, R., Jankuloski, L., Jankulovska, M., Ivic, D., Bandzo, K. (2012). Phenotypic and genetic characterization of Botrytis cinerea isolates from tomato. Genetika, 44, 633–647. https://doi.org/10.2298/GENSR1203663K. Search in Google Scholar

Leyronas, C., Bryone, F., Duffaud, M., Troulet, C., Nicot, P. C. (2015). Assessing host specialization of Botrytis cinerea on lettuce and tomato by genotypic and phenotypic characterization. Plant Pathol., 64, 119–127. https://doi.org/10.1111/PPA.12234. Search in Google Scholar

Leyronas, C., Duffaud, M., Nicot, P. C. (2012). Compared efficiency of the isolation methods for Botrytis cinerea. Mycology, 3, 221–225. https://doi.org/10.1080/21501203.2012.727484. Search in Google Scholar

Li, N., Zhang, J., Yang, L., Wu, M. D., Li, G. Q. (2015). First report of Botrytis pseudocinerea causing gray mold on tomato (Lycopersicon esculentum) in Central China. Plant Dis., 99, 283. https://doi.org/10.1094/PDIS-03-14-0256-PDN. Search in Google Scholar

Liu, J., Meng, Q., Zhang, Y., Xiang, H., Li, Y., Shi, F., Ma, L., Liu, C., Liu, Y., Su, B., et al. (2018). Mycelial compatibility group and genetic variation of sunflower Sclerotinia sclerotiorum in Northeast China. Physiol. Mol. Plant Pathol., 102, 185–192. https://doi.org/10.1016/J.PMPP.2018.03.006. Search in Google Scholar

Meng, L., Mestdagh, H., Ameye, M., Audenaert, K., Höfte, M., van Labeke, M. C. (2020). Phenotypic variation of Botrytis cinerea isolates is influenced by spectral light quality. Front. Plant Sci., 11, 1233. https://doi.org/10.3389/FPLS.2020.01233/BIBTEX. Search in Google Scholar

Mirzaei, S., Mohammadi Goltapeh, E., Shams-Bakhsh, M., Safaie, N., Chaichi, M. (2009). Genetic and phenotypic diversity among Botrytis cinerea isolates in Iran. J. Phytopathol., 157, 474–482. https://doi.org/10.1111/J.1439-0434.2008.01518.X. Search in Google Scholar

Nielsen, K. A. G., Skårn, M. N., Str¸meng, G. M., May Bente Brurberg, M. B., Stensvand, A. Nielsen (2022). Pervasive fungicide resistance in Botrytis from strawberry in Norway: Identification of the grey mould pathogen and mutations. Plant Pathol., 71, 1392–1403. https://doi.org/10.1111/ppa.13557. Search in Google Scholar

Pei, Y. G., Tao, Q. J., Zheng, X. J., Li, Y., Sun, X. F., Li, Z. F., Qi, X. B., Xu, J., Zhang, M., Chen, H. B., et al. (2019). Phenotypic and genetic characterization of Botrytis cinerea population from kiwifruit in Sichuan Province, China. Plant Dis., 103, 748–758. https://doi.org/10.1094/PDIS-04-18-0707-RE. Search in Google Scholar

Plesken, C., Pattar, P., Reiss, B., Noor, Z. N., Zhang, L., Klug, K., Huettel, B., Hahn, M. (2021). Genetic diversity of Botrytis cinerea revealed by multilocus sequencing, and identification of B. cinerea populations showing genetic isolation and distinct host adaptation. Front. Plant Sci., 12, 765. https://doi.org/10.3389/FPLS.2021.663027/BIBTEX. Search in Google Scholar

Plesken, C., Weber, R. W. S., Rupp, S., Leroch, M., Hahn, M. (2015). Botrytis pseudocinerea is a significant pathogen of several crop plants but susceptible to displacement by fungicide-resistant B. cinerea strains. Appl. Environ. Microbiol., 81, 7048–7056. https://doi.org/10.1128/AEM.01719-15. Search in Google Scholar

Punja, Z. K., Sun, L. J. (2001). Genetic diversity among mycelial compatibility groups of Sclerotium rolfsii (teleomorph Athelia rolfsii) and S. delphinii. Mycol. Res., 105, 537–546. https://doi.org/10.1017/S0953756201004002. Search in Google Scholar

Rasiukevičiute, N., Moročko-Bičevska, I., Sasnauskas, A. (2017). Characterisation of growth variability and mycelial compatibility of Botrytis cinerea isolates originated from apple and strawberry in Lithuania. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci., 71 (3), 217–224. https://doi.org/10.1515/PROLAS-2017-0036. Search in Google Scholar

Saito, S., Michailides, T. J., Xiao, C. L. (2014). First report of Botrytis pseudocinerea causing gray mold on blueberry in North America. Plant Dis., 98, 1743. https://doi.org/10.1094/PDIS-06-14-0573-PDN. Search in Google Scholar

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 7, 539. https://doi.org/10.1038/MSB.2011.75. Search in Google Scholar

Staats, M., van Baarlen, P., van Kan, J. A. L. (2005). Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol. Biol. Evol., 22, 333–346. https://doi.org/10.1093/molbev/msi020. Search in Google Scholar

Tamura, K., Stecher, G., Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol., 38, 3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120. Search in Google Scholar

Testempasis, S., Puckett, R. D., Michailides, T. J., Karaoglanidis, G. S. (2020). Genetic structure and fungicide resistance profile of Botrytis spp. populations causing postharvest gray mold of pomegranate fruit in Greece and California. Postharvest Biol. Technol., 170, 111319. https://doi.org/10.1016/J.POSTHARVBIO.2020.111319. Search in Google Scholar

Walker, A. S., Gautier, A., Confais, J., Martinho, D., Viaud, M., Pźcheur, P., le Dupont, J., Fournier, E. (2011). Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology, 101, 1433–1445. https://doi.org/10.1094/PHYTO-04-11-0104. Search in Google Scholar

Williamson, B., Tudzynski, B., Tudzynski, P., van Kan, J. A. L. (2007). Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol., 8, 561–580. https://doi.org/10.1111/J.1364-3703.2007.00417.X. Search in Google Scholar

Yang, R., Li, N., Zhou, Z., Li, G. (2021). Characterization of the populations of Botrytis cinerea infecting plastic tunnel- grown strawberry and tomato in the Hubei Province of China. Plant Dis., 105, 1890–1897 https://doi.org/10.1094/PDIS-01-20-0164-RE. Search in Google Scholar

eISSN:
2255-890X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
General Interest, Mathematics, General Mathematics