[
Andersone, U., Druva-Lūsīte, I., Ieviņa, B., Karlsons, A., Ņečajeva, J., Samsone, I., Ievinsh, G. (2011). The use of nondestructive methods to assess a physiological status and conservation perspectives of Eryngium maritimum L. J. Coastal Conserv., 15, 509–522.10.1007/s11852-010-0139-7
]Search in Google Scholar
[
Aydogan, A., Montoya, L. D. (2011). Formaldehyde removal by common indoor plant species and various growing media. Atm. Environ., 45, 2675–2682.10.1016/j.atmosenv.2011.02.062
]Search in Google Scholar
[
Berry, W. L., Wallace, A. (1981). Toxicity: The concept and relationship to the dose response curve. J. Plant Nutr., 3, 13–19.10.1080/01904168109362814
]Search in Google Scholar
[
Bittssánszky, A., Pilinszky, K., Gyulai, G., Komives, T. (2015). Overcoming ammonium toxicity. Plant Sci., 231, 184–190.10.1016/j.plantsci.2014.12.00525576003
]Search in Google Scholar
[
Brilli, F., Fares S., Ghirardo, A., de Visser, P., Calatayud, V., Muñoz, A., Annesi-Maesano, I., Sebastiani, F., Alivernini, A., Varriale, V., Menghini, F. (2018). Plants for sustainable improvement of indoor air quality. Trends Plant Sci., 23, 507–512.10.1016/j.tplants.2018.03.00429681504
]Search in Google Scholar
[
Chang, K. H., Wu, R. Y., Chuang, K. C., Hsieh, T. F., Chung, R. S. (2010). Effects of chemical and organic fertilizers on the growth, flower quality and nutrient uptake of Anthurium andreanum, cultivated for cut flower production. Sci. Hortic., 125, 434–441.10.1016/j.scienta.2010.04.011
]Search in Google Scholar
[
Chang, K. H., Wu, R. Y., Chang, G. P., Hsieh, T. F., Chung, R. S. (2012). Effects of nitrogen concentration of growth and nutrient uptake of Anthurium andraenaum Lind. cultivated in coir under different seasonal conditions. HortScience, 47, 515–521.10.21273/HORTSCI.47.4.515
]Search in Google Scholar
[
Chun, S.-C., Yoo, M. H., Moon, Y. S., Shin, M. H., Son, K.-C., Chung, I.-M., Kays, S. J. (2010). Effect of bacterial population from rhizosphere of various foliage plants on removal of indoor volatile organic compounds. Kor. J. Hort. Sci. Technol., 28, 476–483.
]Search in Google Scholar
[
de Moura, F. B., Vieira, M. R. S., Simões, A. N., Ferreira-Silva, S. L., de Souza C. A. V., de Souza, E. S., da Rocha, A. T., da Silva, L. F., Júnior, M. A. (2018). Physiological effect of kinetin on the photosynthetic apparatus and antioxidant enzyme activities during production of Anthurium. Hortic. Plant J., 4, 182–192.10.1016/j.hpj.2018.04.001
]Search in Google Scholar
[
Dela Cruz, M., Müller, R., Svensmark, B., Pedersen, J. S., Christensen, J. H. (2014). Assessment of volatile organic compound removal by indoor plants — a novel experimental setup. Environ. Sci. Pollut. Res., 21, 7838–7846.10.1007/s11356-014-2695-024638833
]Search in Google Scholar
[
Dordio, A., Carvalho, A. J. P. (2013). Constructed wetlands with light expanded clay aggregates for agricultural wastewater treatment. Sci. Total Environ., 463–464, 454–461.10.1016/j.scitotenv.2013.06.05223831791
]Search in Google Scholar
[
Dufour, L, Guérin, V. (2005). Nutrient solution effects on the development and yield of Anthurium andreanum Lind. in tropical soilless conditions. Sci. Hortic., 105, 269–282.10.1016/j.scienta.2005.01.022
]Search in Google Scholar
[
Fichtner, K., Schulze, E. D. (1992). The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia, 92, 236–241.10.1007/BF0031737028313057
]Search in Google Scholar
[
Gawrońska, H., Bakera, B. (2015). Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health, 8, 265–272.10.1007/s11869-014-0285-4444993126052368
]Search in Google Scholar
[
Gotsch, S. G., Nadkarni, N., Darby, A., Glunk, A., Dix, M., Davidson, K., Dawson, T. E. (2015). Life in the treetops: Ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecol. Monogr., 85, 393–412.10.1890/14-1076.1
]Search in Google Scholar
[
Higaki, T., Imamura, J. S., Paull, R. E. (1992). N. P, and K rates and leaf tissue standards for optimum Anthurium andraenaum flower production. HortScience, 27, 909–912.10.21273/HORTSCI.27.8.909
]Search in Google Scholar
[
Horaczek, T, Dàbrowski, P., Kalaji, H. M., Baczewska-Dàbrowska, A. H., Pietkiewicz, S., Stępień, W., Gozdowski, D. (2020). JIP-test as a tool for early detection of the macronutrients deficiency in Miscanthus plants. Phtosynthetica, 58, 507–517.10.32615/ps.2019.177
]Search in Google Scholar
[
Ievinsh, G., Andersone-Ozola, U., Zeipiņa, S. (2020). Comparison of the effects of compost and vermicompost soil amendments for organic production of four herb species. Biol. Agric. Hortic., 36, 267–282.10.1080/01448765.2020.1812116
]Search in Google Scholar
[
Iranpour, R., Cox, H. H. J., Deshusses, M. A., Schroeder, E. D. (2005). Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ. Progr., 24, 254–267.10.1002/ep.10077
]Search in Google Scholar
[
Irga, P. J., Torpy, F. R., Burchett, M. D. (2013). Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atm. Environ., 77, 267–271.10.1016/j.atmosenv.2013.04.078
]Search in Google Scholar
[
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V., Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant., 38, 1–11.10.1007/s11738-016-2113-y
]Search in Google Scholar
[
Kastori, R., Plesnicar, M., Arsenijevic-Maksimovic, I., Petrovic, N., Pankovic, D., Sakac, Z. (2000). Photosynthesis, chlorophyll fluorescence, and water relations in young sugar beet plants as affected by sulfur supply. J. Plant Nutr., 23, 1037–1049.10.1080/01904160009382080
]Search in Google Scholar
[
Kim, K. J., Kil, M. J., Song, J. S., Yoo, E. H., Son, K.-C., Kays, S. J. (2008). Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J. Amer. Soc. Hort. Sci., 133, 521–526.10.21273/JASHS.133.4.521
]Search in Google Scholar
[
Kim, K. J., Yoo, E. H., Jeong, M. I., Song, J. S., Lee, S. Y., Kays, S. J. (2011). Changes in the phytoremediation potential of indoor plants with exposure to toluene. HortScience 46, 1646–1649.10.21273/HORTSCI.46.12.1646
]Search in Google Scholar
[
Liu, Y.-J., Mu, Y.-J., Zhu, Y.-G., Ding, H., Arens, N. C. (2007). Which ornamental plant species effectively remove benzene from indoor air? Atmos. Environ., 41, 650–654.10.1016/j.atmosenv.2006.08.001
]Search in Google Scholar
[
Males, J. (2017). Secrets of succulence. J. Exp. Bot., 68, 2121–2134.10.1093/jxb/erx096
]Search in Google Scholar
[
Matin, M. A., Brown, J. H., Ferguson, H. (1989). Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agron. J., 81, 100–105.10.2134/agronj1989.00021962008100010018x
]Search in Google Scholar
[
McDonald, A. J. S. (1994). Nutrient supply and plant growth. In: Lumsden P. J., Nicholas J. R., Davies W. J. (eds.) Physiology, Growth and Development of Plants in Culture. Kluwer Academic Publishers, Dordrecht, pp. 47–57.10.1007/978-94-011-0790-7_4
]Search in Google Scholar
[
McDonald, J. H. (2014). Handbook of Biological Statistics. 3rd edn. Sparky House Publishing, Maryland. 299 pp.
]Search in Google Scholar
[
Mosaddegh, M. H., Jafarian, A., Ghazemi, A., Mosaddegh, A. (2014). Phytoremediation of benzene, toluene, ethylbenzene and xylene contaminated air by D. deremensis and O. microdasys plants. J. Environ. Helath Sci. Eng., 12, 39.10.1186/2052-336X-12-39
]Search in Google Scholar
[
Ogburn, R. M., Edwards, E. J. (2010). The ecological water-use strategies of succulent plants. In: Kader, J.-C., Delseny, M. (eds.) Advances in Botanical Research. Vol. 55. Academic Press, Burlington, MA, pp. 179–225.10.1016/B978-0-12-380868-4.00004-1
]Search in Google Scholar
[
Orwell, R. L., Wood, R. A., Burcheit, M. D., Tarran, J., Torpy, F. (2006). The potted-plant microcosm substantially reduces indoor air VOC pollution: II. Laboratory study. Water Air Soil Pollut., 177, 59–80.10.1007/s11270-006-9092-3
]Search in Google Scholar
[
Panyametheekul S., Rattanapun T., Morris J., Ongwandee M. (2019). Foliage houseplant responses to low formaldehyde levels. Building Environ., 147, 67–76.10.1016/j.buildenv.2018.09.053
]Search in Google Scholar
[
Paull, R. E., Higaki, T., Imamura, J. S. (1992). Season and fertilization affect the post-harvest flower life of anthurium. Sci. Hortic., 49, 125–134.10.1016/0304-4238(92)90149-7
]Search in Google Scholar
[
Pettit, T., Irga, P. J., Torpy, F. R. (2018). Towards practical indoor air phytoremediation: A review. Chemosphere, 208, 960–974.10.1016/j.chemosphere.2018.06.04830068040
]Search in Google Scholar
[
Rachmilevitch, S., Cousins, A. B., Bloom, A. J (2004). Nitrate assimilation in plant shoots depend on photorespiration. Proc. Natl. Acad. Sci. USA, 101, 11506–11510.10.1073/pnas.040438810150923015272076
]Search in Google Scholar
[
Rene, E. R., López, M. E., Murthy, D. V. S., Swaminathan, T. (2009). Removal of xylene in gas-phase using compost–ceramic ball biofilter. Int. J. Phys. Sci., 4, 638–644.
]Search in Google Scholar
[
Resh, H. M. (2013). Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower.7th edn. CRC Press, Boca Raton. 513 pp.
]Search in Google Scholar
[
Saura-Mas, S., Lloret, F. (2007). Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Ann. Bot., 99, 545–554.10.1093/aob/mcl284280295917237213
]Search in Google Scholar
[
Soreanu, G., Dixon, M., Darlington, A. (2013). Botanical biofiltration of indoor gaseous pollutants. A mini-review. Chem. Eng. J., 229, 585–594.10.1016/j.cej.2013.06.074
]Search in Google Scholar
[
Strand, M. (1997). Effect of mineral nutrient content on oxygen exchange and chlorophyll a fluorescence in needles of Norway spruce. Tree Physiol., 17, 221–230.10.1093/treephys/17.4.22114759861
]Search in Google Scholar
[
Teiri, H., Pourzamani, H., Hajizadeh, V. (2018). Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment. Chemosphere, 197, 375–381.10.1016/j.chemosphere.2018.01.07829407808
]Search in Google Scholar
[
Torpy, F., Clements, N., Pollinger, M., Dengel, A., Mulvihill, I., He, C., Irga, P. (2018). Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK). Air Qual. Atmos. Health, 11, 163–170.10.1007/s11869-017-0518-4584713729568336
]Search in Google Scholar
[
Torpy, F., Zavattaro, M. (2018). Bench-study of green-wall plants for indoor air pollution reduction. J. Living Archit., 5, 1–15.10.46534/jliv.2018.05.01.001
]Search in Google Scholar
[
Tsimilli-Michael, M. (2020). Revisiting JIP-test: An educative review on concepts, assumptions, approcimations, definitions and terminology. Photosynthetica, 58, 275–292.10.32615/ps.2019.150
]Search in Google Scholar
[
Van Jaarsveld, E. (2006). The Southern African Plectranthus and the Art of Turning Shade to Glade. Fernwood Press, Cape Town. 176 pp.
]Search in Google Scholar
[
Walters, R. G. (2005). Towards an understanding of photosynthetic acclimation. J. Exp. Bot., 56 (411), 435–447.10.1093/jxb/eri060
]Search in Google Scholar
[
Wang, H., Liu, R. L., Jin, J. Y. (2009). Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize. Biol. Plant., 53, 191–194.10.1007/s10535-009-0033-z
]Search in Google Scholar
[
Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil, 321, 385–408.10.1007/s11104-008-9686-1
]Search in Google Scholar
[
Willows, R. D. (2003). Biosynthesis of chlorophylls from protoporphyrin IX. Nat. Prod. Rep., 20, 327–341.10.1039/b110549n12828371
]Search in Google Scholar
[
Yang, D. S., Pennisi, S. V., Son, K.-C., Kays, S. J. (2009). Screening indoor plants for volatile organic pollutant removal efficiency. HortScience, 44, 1377–1381.10.21273/HORTSCI.44.5.1377
]Search in Google Scholar
[
Yeh, D. M., Lin, L., Wright, C. J. (2000). Effects of mineral nutrient deficiencies on laf development, visual symptoms and shoot–root ratio of Spathiphyllum. Sci. Hortic., 86, 223–233.10.1016/S0304-4238(00)00152-7
]Search in Google Scholar
[
Yoo, M. H., Kwon, Y. J., Son, K.-C., Kays, S. J. (2006). Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. J. Amer. Soc. Hort. Sci., 131, 452–458.10.21273/JASHS.131.4.452
]Search in Google Scholar
[
Zhang, H., Pennisi, S. V., Kays, S. J., Habteselassie, M. Y. (2013). Isolation and indentification of toluene-metabolizing bacteria from rhizospheres of two indoor plants. Water Air Soil Pollut., 224, 1648.10.1007/s11270-013-1648-4
]Search in Google Scholar
[
Ziadi, N., Bélanger, G., Claessens, A., Lefebvre, L., Tremblay, N., Cambouris, A. N., Nolin, M. C., Parent, L. É. (2010). Plant-based diagnostic tools for evaluating wheat nitrogen status. Crop Sci., 50, 2580–2590.10.2135/cropsci2010.01.0032
]Search in Google Scholar