Otwarty dostęp

Mapping Submarine Geomorphology of the Philippine and Mariana Trenches By an Automated Approach Using GMT Scripts


Zacytuj

Amante, C., Eakins, B. W. (2009). ETOPO1 1 arc-minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA. https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf (accessed 14.03.2022). Search in Google Scholar

Bautista, C. B., Bautista, M. L. P., Oike, K., Wu, F. T., Punongbayan, R. S. (2001). A new insight on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics, 339, 279–310.10.1016/S0040-1951(01)00120-2 Search in Google Scholar

Besana, G. M., Negishi, H., Ando, M. (1997). The three-dimensional attenuation structures beneath the Philippine archipelago based on seismic intensity data inversion. Earth Planet Sci. Lett., 15, 1–11.10.1016/S0012-821X(97)00112-X Search in Google Scholar

Brothers, D. S., Miller, N. C., Barrie, J. V., Haeussler, P. J., Greene, H. G., Andrews, B. D., Zielke, O., Watt, J., Dartnell, P. (2020). Plate boundary localization, slip-rates and rupture segmentation of the Queen Charlotte Fault based on submarine tectonic geomorphology. Earth Planet Sci. Lett., 530, 115882.10.1016/j.epsl.2019.115882 Search in Google Scholar

Chadwick, W. W., Merle, S. G., Baker, E. T., Walker, S. L., Resing, J. A., Butterfield, D. A., Anderson, M. O., Baumberger, T., Bobbitt, A. M. (2018). A recent volcanic eruption discovered on the central Mariana back-arc spreading center. Front. Earth Sci., 6, 1–16.10.3389/feart.2018.00172 Search in Google Scholar

Christensen, U. R. (1996). The influence of trench migration on slab penetration into the lower mantle. Earth Planet Sci. Lett., 140, 27–39.10.1016/0012-821X(96)00023-4 Search in Google Scholar

Das, P., Tien-Shun Lin, A., Chen, M.-P. P., Miramontes, E., Liu, C.-S., Huang, N.-W., Kung, J., Hsu, S.-K., Pillutla, R. K., Nayak, K. (2021). Deep-sea submarine erosion by the Kuroshio Current in the Manila accretionary prism, offshore Southern Taiwan. Tectonophysics, 807, 228813.10.1016/j.tecto.2021.228813 Search in Google Scholar

Deschamps, A., Lallemand, S. (2003). Geodynamic setting of Izu-Bonin-Mariana boninites. In: Larter, R. D., Leat, P. T. Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes, Vol. 219. Geological Society of London, London, pp. 163–185.10.1144/GSL.SP.2003.219.01.08 Search in Google Scholar

Dong, D., Zhang, Z., Bai, Y., Fan, J., Zhang, G. (2018). Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction. Tectonophysics, 722, 410–421.10.1016/j.tecto.2017.11.030 Search in Google Scholar

Fan, J., Zhao, D. (2019). P-wave anisotropic tomography of the central and southern Philippines. Phys. Earth Planet. Inter., 286, 154–164.10.1016/j.pepi.2018.12.001 Search in Google Scholar

Freymuth, H., Vils, F., Willbold, M., Taylor, R., Elliott, T. (2015). Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth Planet Sci. Lett., 432, 176–186.10.1016/j.epsl.2015.10.006 Search in Google Scholar

Fryer, P., Becker, N., Appelgate, B., Martinez, F., Edwards, M., Fryer, G. (2003). Why is the Challenger Deep so deep? Earth Planet Sci. Lett., 211, 259–269.10.1016/S0012-821X(03)00202-4 Search in Google Scholar

Gardner, J. V., Armstrong, A. A., Calder, B. R., Beaudoin, J. (2014). So, how deep is the Mariana Trench? Mar. Geod., 37, 1–13.10.1080/01490419.2013.837849 Search in Google Scholar

Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C. (2007). Swath-bathymetric mapping. Rep. Polar Marine Res., 557, 38–45. Search in Google Scholar

GEBCO Compilation Group (2020) GEBCO 2020 Grid. doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9. https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (accessed 14.03.2022). Search in Google Scholar

Grad, M., Tiira, T., ESC Working Group (2009). The Moho depth map of the European Plate, Geophys. J. Int., 176 (1), 279–292.10.1111/j.1365-246X.2008.03919.x Search in Google Scholar

Guotana, J. M. R., Payot, B. D., Dimalanta, C. B., Ramos, N. T., Faustino-Eslava, D. V., Queaño, K. L., Yumul, G. P. (2017). Arc and backarc geo-chemical signatures of the proto-Philippine Sea Plate: Insights from the petrography and geochemistry of the Samar Ophiolite volcanic section. J. Asian Earth Sci., 142, 77–92.10.1016/j.jseaes.2016.07.031 Search in Google Scholar

Hall, R. (1995). Active margins and marginal basins of the Western Pacific. The Philippine Sea Plate: Magnetism and reconstructions. Geophys. Monogr. Ser. AGU, 88, 371–404.10.1029/GM088p0371 Search in Google Scholar

Haren, van H., Berndt, C., Klaucke, I. (2017). Ocean mixing in deep-sea trenches: New insights from the Challenger Deep, Mariana Trench. Deep Sea Res. Part I Oceanogr. Res., 129, 1–9.10.1016/j.dsr.2017.09.003 Search in Google Scholar

Harris, P. T., Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol, 285, 69–86.10.1016/j.margeo.2011.05.008 Search in Google Scholar

Harris, P. T., Barrie, J. V., Conway, K. W., Greene, H. G. (2014a). Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins. Sea Res. Part II Top., 104, 83–92.10.1016/j.dsr2.2013.06.017 Search in Google Scholar

Harris, P. T., Macmillan-Lawler, M., Rupp, J., Baker, E. K. (2014b). Geo-morphology of the oceans. Mar. Geol., 352, 4–24.10.1016/j.margeo.2014.01.011 Search in Google Scholar

Hashima, A., Sato, T., Sato, H., Asao, K., Furuya, H., Yamamoto, S., Kameo, K., Miyauchi, T., Ito, T., Tsumura, N., Kaneda, H. (2016). Simulation of tectonic evolution of the Kanto Basin of Japan since 1 Ma due to subduction of the Pacific and Philippine Sea plates and the collision of the Izu-Bonin arc. Tectonophysics, 679, 1–14.10.1016/j.tecto.2016.04.005 Search in Google Scholar

Hessler, R. R., Ingram, C. L., Yayanos, A. A., Burnett, B. R. (1978). Scavenging amphipods from the floor of the Philippine Trench. Deep Sea Res. Part I Oceanogr. Res., 25, 1029–1047.10.1016/0146-6291(78)90585-4 Search in Google Scholar

Hilde, T. W. C., Lee, C. S. (1984). Origin and evolution of the West Philippine Basin: A new interpretation. Tectonophysics, 102, 85–104.10.1016/0040-1951(84)90009-X Search in Google Scholar

Hilst R., v.d., Seno, T. (1993). Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth Planet Sci. Lett., 120, 395–407.10.1016/0012-821X(93)90253-6 Search in Google Scholar

Hirano, S., Nakata, T., Sangawa, A. (1986). Fault topography and quaternary faulting along the Philippine Fault zone, Central Luzon, the Philippines. J. Geog., 95, 1–23.10.5026/jgeography.95.2_71 Search in Google Scholar

Hillier, J. K. (2011). Chapter Twelve – Submarine Geomorphology: Quantitative Methods Illustrated with the Hawaiian Volcanoes. In: Smith, M. J., Paron, P., Griffiths, J. S. (eds.) Developments in Earth Surface Processes. Vol. 15. Elsevier, pp. 359–375.10.1016/B978-0-444-53446-0.00012-4 Search in Google Scholar

Holt, A. F., Royden, L. H., Becker, T. W., Faccenna, C. (2018). Slab interactions in 3-D subduction settings: The Philippine Sea Plate region. Earth Planet Sci. Lett., 489, 72–83.10.1016/j.epsl.2018.02.024 Search in Google Scholar

Idárraga-García, J., García-Varón, J., León, H. (2021). Submarine geomorphology, tectonic features and mass wasting processes in the archipelago of San Andres, Providencia and Santa Catalina (western Caribbean). Mar. Geol., 435, 106458.10.1016/j.margeo.2021.106458 Search in Google Scholar

IHO (2012). GEBCO Gazetteer of Undersea Feature Names, IHO-IOC. https://www.ngdc.noaa.gov/gazetteer/HYPERLINK “” [(accessed 07.04.2022). Search in Google Scholar

Jamieson, A. J., Stewart, H. A., Rowden, A. A., Clark, M. R. (2020). Chapter 59 – Geomorphology and benthic habitats of the Kermadec Trench, Southwest Pacific Ocean. In: Harris, P. T., Baker, E. (eds.) Seafloor Geomorphology as Benthic Habitat.2nd edn. Elsevier, pp. 949–966.10.1016/B978-0-12-814960-7.00059-2 Search in Google Scholar

Karig, D. E. (1983). Accreted terranes in the northern part of the Philippine archipelago. Tectonics, 2, 211–236.10.1029/TC002i002p00211 Search in Google Scholar

Kawabe, M. (1993). Deep water properties and circulation in the western North Pacific. Deep Ocean Circulation: Physical and Chemical Aspects, 17–37.10.1016/S0422-9894(08)71315-1 Search in Google Scholar

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: A case study from the Slovak Natura 2000 protected area. Open Geosci., 5 (1), 28–42.10.2478/s13533-012-0120-0 Search in Google Scholar

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environ. Eng. Manag. J., 2 (16), 449–458.10.30638/eemj.2017.045 Search in Google Scholar

Lemenkova, P. (2019a). Statistical analysis of the Mariana Trench geomorphology R programming language, Geodesy Cartogr. 45 (2), 57–84.10.3846/gac.2019.3785 Search in Google Scholar

Lemenkova, P. (2019b). Testing linear regressions by StatsModel Library of Python for oceanological data interpretation. Aquat. Sci. Eng., 34, 51–60.10.26650/ASE2019547010 Search in Google Scholar

Lemenkova, P. (2019c). Topographic surface modelling using raster grid datasets by GMT: Example of the Kuril-Kamchatka Trench, Pacific Ocean. Rep. Geodesy Geoinformatics, 108, 9–22.10.2478/rgg-2019-0008 Search in Google Scholar

Lemenkova, P. (2019d). GMT based comparative analysis and geomorpho-logical mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geogr. Tech., 14 (2), 39–48.10.21163/GT_2019.142.04 Search in Google Scholar

Lemenkova, P. (2020a). Geomorphology of the Puerto Rico Trench and Cayman Trough in the context of the geological evolution of the Caribbean Sea. Ann. Univ. Mariae Curie-Skùodowska, B Geogr. Geol. Mineral. Petrogr., 75, 115–141. Search in Google Scholar

Lemenkova, P. (2020b). The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea. Geol. Geophys. Environ., 46 (3), 205–222.10.7494/geol.2020.46.3.205 Search in Google Scholar

Lemenkova, P. (2020c). Using GMT for 2D and 3D modeling of the Ryukyu Trench topography, Pacific Ocean. Misc. Geogr., 25 (3), 1–13.10.2478/mgrsd-2020-0038 Search in Google Scholar

Lemenkova, P. (2020d). GEBCO gridded bathymetric datasets for mapping Japan Trench geomorphology by means of GMT scripting toolset. Geodesy Cartogr., 46 (3), 98–112.10.3846/gac.2020.11524 Search in Google Scholar

Lemenkova, P. (2020e). Sentinel-2 for high resolution mapping of slope-based vegetation indices using machine learning by SAGA GIS. Transylv. Rev. Syst. Ecol. Res., 22 (3), 17–34.10.2478/trser-2020-0015 Search in Google Scholar

Lemenkova, P. (2021a). Geodynamic setting of Scotia Sea and its effects on geomorphology of South Sandwich Trench, Southern Ocean. Pol. Polar Res., 42 (1), 1–23. Search in Google Scholar

Lemenkova, P. (2021b). Topography of the Aleutian Trench south-east off Bowers Ridge, Bering Sea, in the context of the geological development of North Pacific Ocean. Baltica, 34 (1), 27–46.10.5200/baltica.2021.1.3 Search in Google Scholar

Lemenkova, P. (2021c). The visualization of geophysical and geomorpho-logic data from the area of Weddell Sea by the Generic Mapping Tools. Stud. Quat., 38 (1), 19–32. Search in Google Scholar

Lemenkova, P. (2021d). SAGA GIS for computing multispectral vegetation indices by landsat TM for mapping vegetation greenness. Contemp. Agric., 70 (1–2), 67–75.10.2478/contagri-2021-0011 Search in Google Scholar

Lemenkova, P. (2021e). Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness. Czech Polar Rep., 11 (1), 67–85.10.5817/CPR2021-1-6 Search in Google Scholar

Mayer, L., Jakobsson, M., Allen, G., Dorschel, B., Falconer, R., Ferrini, V., Lamarche, G., Snaith, H., Weatherall, P. (2018). The Nippon Foundation — GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences, 8, 63.10.3390/geosciences8020063 Search in Google Scholar

Normark, W. R., Carlson, P. R. (2003). Giant submarine canyons: Is size any clue to their importance in the rock record? Geol. Soc. Amer. Spec., 370, 175–190.10.1130/0-8137-2370-1.175 Search in Google Scholar

Okino, K., Ohara, Y., Fujiwara, T., Lee, S. M., Koizumi, K., Nakamura, Y., Wu, S. (2009). Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate. Tectonophysics, 466, 213–228.10.1016/j.tecto.2007.11.017 Search in Google Scholar

Ramos, N. T., Tsutsumi, H., Perez, J. S., Bermas, P. P. (2012). Uplifted marine terraces in Davao Oriental Province, Mindanao Island, Philippines and their implications for large prehistoric offshore earthquakes along the Philippine trench. J. Asian Earth Sci., 45, 114–125.10.1016/j.jseaes.2011.07.028 Search in Google Scholar

Schenke, H. W., Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydro-graphische Nachrichten, 25, 16–21. Search in Google Scholar

Seno, T., Maruyama, S. (1984). Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102, 53–84.10.1016/0040-1951(84)90008-8 Search in Google Scholar

Stern, R. J. (2021). Ocean Trenches. In: Alderton, D., Elias, S. A. (eds.) Encyclopedia of Geology. 2nd edn. Academic Press, 845–854.10.1016/B978-0-08-102908-4.00099-0 Search in Google Scholar

Suetova, I. A., Ushakova, L. A., Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geogr. Nat. Resour., 4, 138–142. Search in Google Scholar

Suzuki, S., Pena, R. E., Tam, T. A. I., Yumul Jr., G. P., Dimalanta, C. B., Us, M., Ishida, K. (2017). Development of the Philippine Mobile Belt in northern Luzon from Eocene to Pliocene. J. Asian Earth Sci., 142, 32–44.10.1016/j.jseaes.2016.08.018 Search in Google Scholar

Yu, G. K., Chang, W. Y. (1991). Lateral variations in the upper mantle structure of the Philippine Sea basin. Terr. Atmospheric Ocean. Sci., 2, 281–296.10.3319/TAO.1991.2.4.281(T) Search in Google Scholar

Yu, G. K., Tsai, M. T., Hwang, R. D. (2000). Velocity dispersion and amplitude attenuation of Rayleigh waves across the Philippine Sea. Terr. Atmospheric Ocean. Sci., 11, 515–524.10.3319/TAO.2000.11.2.515(T) Search in Google Scholar

Wessel, P., Smith, W. H. F. (1996). A global self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth, 101, 8741–8743.10.1029/96JB00104 Search in Google Scholar

Wessel, P., Smith, W. H. F. (1991). Free software helps map and display data. EOS Trans. AGU, 72, 441.10.1029/90EO00319 Search in Google Scholar

Zhang, C., Liu, Q., Li, X., Wang, M., Liu, X., Yang, J., Xu, J., Jiang, Y. (2021). Spatial patterns and co-occurrence networks of microbial communities related to environmental heterogeneity in deep-sea surface sediments around Yap Trench, Western Pacific Ocean. Sci. Total Environ., 759, 143799.10.1016/j.scitotenv.2020.143799 Search in Google Scholar

eISSN:
2255-890X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
General Interest, Mathematics, General Mathematics