Zacytuj

Abdelghany, A. M., El-Banna, A. A., Salama, E. A., Ali, M. M., Al-Huqail, A. A., Ali, H. M., Paszt, L. S., El-Sorady, G. A., Lamlom, S. F. (2022). The individual and combined effect of nanoparticles and biofertilizers on growth, yield, and biochemical attributes of peanuts (Arachis hypogea L.). Agronomy, 12 (2), 398.10.3390/agronomy12020398 Search in Google Scholar

Abdellatif, K. F., Abdelfattah, R. H., El-Ansary, M. S. F. (2016). Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iran J. Biotechnol., 14 (4), 250–259.10.15171/ijb.1309543499528959343 Search in Google Scholar

Abdelsalam, N. R., Abdel-Megeed, A., Ali, H. M., Salem, M. Z. M., Al-Hayali, M. F. A., Elshikh, M. S. (2018). Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotoxicol. Environ. Safety, 155, 76–85. https://doi.org/10.1016/j.ecoenv.2018.02.06910.1016/j.ecoenv.2018.02.06929510312 Search in Google Scholar

Ahmed, B., Dwidwdi, S., Abdin, M. Z., Azam, A., Al-Shaeri, M., Khan, M. S., Saquib, Q., Al-Khedhairy, A. A., Musarrat, J. (2017). Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci. Rep., 7, 40685.10.1038/srep40685 Search in Google Scholar

Ahmed, B., Shahid, M., Khan, M. S., Musarrat, J. (2018). Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb. Metallomics, 10, 13151327. doi: 10.1039/c8mt00093j.10.1039/C8MT00093J30141802 Search in Google Scholar

Ahmed, S., Ahmad, M., Swami, B. L., Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 7, 17–28.10.1016/j.jare.2015.02.007470347926843966 Search in Google Scholar

Asgari, F., Majd, A., Jonoubi, P., Najafi, F. (2018). Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol. Biochem., 127, 152–160.10.1016/j.plaphy.2018.03.02129587167 Search in Google Scholar

Athanassiou, C. G., Kavallieratos, N. G., Benelli, G., Losic, D., Rani, P. U., Desneux, N. (2018). Nanoparticles for pest control: current status and future perspectives. J. Pest. Sci., 91, 1–15.10.1007/s10340-017-0898-0 Search in Google Scholar

Azevedo, S. L., Holz, T., Rodrigues, J., Monteiro, T., Costa, F. M., Soares, A. M. V. M., Loureiro, S. (2017). A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials. Sci. Total Environ., 579, 337–344.10.1016/j.scitotenv.2016.11.09527887838 Search in Google Scholar

Bhatia, S. (2016). Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural Polymer Drug Delivery Systems. Springer, Cham, pp. 3393.10.1007/978-3-319-41129-3_2 Search in Google Scholar

Burlaka, O. M., Pirko, Y. V., Yemets, A. I., Blume, Y. B. (2015). Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol. Genet., 49, 349–357.10.3103/S009545271506002X Search in Google Scholar

Çekiç, F. Ö., Ekinci, S., Inal, M. S., Ünal, D. (2017). Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turkish J. Biol., 41, 700–707.10.3906/biy-1608-36 Search in Google Scholar

Chichiriccò, G., Poma, A. (2015). Penetration and toxicity of nanomaterials in higher plants. Nanomaterials, 5, 851–873. doi:10.3390/nano5020851.10.3390/nano5020851531292028347040 Search in Google Scholar

Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., Landry, M. P. (2018). Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol., 36 (9), 882–897.10.1016/j.tibtech.2018.03.00929703583 Search in Google Scholar

Das, D., Datta, A. K., Kumbhakar, D. V., Ghosh, B., Pramanik, A., Gupta, S. (2018). Nanoparticle (CdS) interaction with host (Sesamum indicum L.): Its localization, transportation, stress induction and genotoxicity. J. Plant Interact., 13 (1), 182–194.10.1080/17429145.2018.1455903 Search in Google Scholar

De La Torre-Roche, R., Hawthorne, J., Deng, Y., Xing, B., Cai, W., Newman, L. A.,Wang, Q., Ma, X., Hamdi, H., White, J. C. (2013). Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ. Sci. Technol., 47 (21), 12539–12547.10.1021/es403480924079803 Search in Google Scholar

Demirer, G. S., Zhang, H., Matos, J., Goh, N., Cunningham, F. J., Sung, Y., Chang, R., Aditham, A. J., Chio, L., Cho, M. J., Staskawicz, B., Landry, M. P. (2018). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. BioRxiv. doi: https://doi.org/10.1101/179549.10.1101/179549 Search in Google Scholar

Doğaroğlu, Z. G., Köleli, N. (2017). TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.). Soil Air Water, 45 (11). https://doi.org/10.1002/clen.20170009610.1002/clen.201700096 Search in Google Scholar

Doğaroğlu Z. G., Kölelia N. (2018). Co-application of EDDS and ZnO nanoparticles with TiO2Ag nanoparticles on rye. Int. Adv. Res. Eng. J., 02 (01), 009–013. Search in Google Scholar

Faisal, M., Saquib, Q., Alatar, A. A., Al-Khedhairy, A. A., Ahmed, M., Ansari, S. M., Alwathnani, H. A., Dwivedi, S., Musarra, J., Praveen, S. (2016). Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway. Biol. Res., 49, 20.10.1186/s40659-016-0080-9479713426988690 Search in Google Scholar

Faizan, M., Faraz, A., Yusuf, M., Khan, S. T., Hayat, S. (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56, 678–686.10.1007/s11099-017-0717-0 Search in Google Scholar

Fincheira, P., Tortella, G., Duran, N., Seabra, A. B., Rubilar, O. (2020). Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Crit. Rev. Biotechnol., 40 (1), 15–30.10.1080/07388551.2019.168193131658818 Search in Google Scholar

Finiuk, N., Buziashvili, A., Burlaka, O., Zaichenko, A., Mitina, N., Miagkota, O., Lobachevska, O., Stoika, R., Blume, Y., Yemets, A. (2017). Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells. Plant Cell. Tissue Organ Cult., 131, 27–39.10.1007/s11240-017-1259-7 Search in Google Scholar

Giraldo, J. P., Wu, H., Newkirk, G. M., Kruss, S. (2019). Nanobiotechnology approaches for engineering smart plant sensors. Nature Nanotechnol., 14 (6), 541–553.10.1038/s41565-019-0470-631168083 Search in Google Scholar

Gokak, I. B., Taranath, T. C. (2015). Seed germination and growth responses of Macrotyloma uniflorum (Lam.) Verdc. exposed to zinc and zinc nanoparticles. Int. J. Environ. Sci., 5, 840–847. Search in Google Scholar

Gottschalk, F., Lassen, C., Kjoelholt, J., Christensen, F., Nowack, B. (2015). Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int. J. Environ. Res. Public Health, 12, 5581–5602.10.3390/ijerph120505581445498626006129 Search in Google Scholar

Gruyer, N., Dorais, M., Bastien, C., Dassylva, N., Triffault-Bouchet, G. (2014). Interaction between silver nanoparticles and plant growth. ISHS Acta Horticulturae 1037. In: International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant Factory - Greensys 2013, pp. 795–800. doi: 10.17660/ActaHortic.2014.1037.105.10.17660/ActaHortic.2014.1037.105 Search in Google Scholar

Gui, X., Zhang, Z., Liu, S., Ma, Y., Zhang, P., He, X., Li, Y., Zhang, P., Li, H., Rui, Y., Liu, L., Cao, W. (2015). Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One, 10 (8), e0134261. doi: 10.1371/journal.pone.0134261.10.1371/journal.pone.0134261455282926317617 Search in Google Scholar

Helaly, M. N., El-Metwally, M. A., El-Hoseiny, H., Omar, S. A., El-Sheery, N. I. (2014). Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Austral. J. Crop Sci., 8 (4), 612–624. Search in Google Scholar

Hernandez-Viezcas, J. A., Castillo-Michel, H., Peralta-Videa, J. R., Gardea-Torresdey, J. L. (2016). Interactions between CeO2 nanoparticles and the desert plant mesquite: A spectroscopy approach. ACS Sustain. Chem. Eng., 4 (3), 1187–1192.10.1021/acssuschemeng.5b01251 Search in Google Scholar

Hossain, Z., Mustafa, G., Komatsu, S. (2015). Plant responses to nano-particle stress. Int. J. Mol. Sci., 16, 26644–26653. doi:10.3390/ijms161125980.10.3390/ijms161125980466183926561803 Search in Google Scholar

Hu, J., HuiyGuo, H., Li, J., Wang, Y., Xiao, L, Xing, B. (2017). Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. J. Nanobiotechnol., 15, 51.10.1186/s12951-017-0286-1550485828693496 Search in Google Scholar

Hubbard, J. D., Lui, A., Landry, M. P. (2020). Multiscale and multi-disciplinary approach to understanding nanoparticle transport in plants. Curr. Opin. Chem. Eng., 30, 135–143. https://doi.org/10.1016/j.coche.2020.10065910.1016/j.coche.2020.100659 Search in Google Scholar

Hussain, A., Ali, S., Rizwan, M., Zia Ur Rehman, M., Javed, M. R., Imran, M., Chatha, S. A. S., Nazir, R. (2018). Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollut., 242, 1518–1526. doi: 10.1016/j.envpol.2018.08.036.10.1016/j.envpol.2018.08.03630144725 Search in Google Scholar

Iqbal, M., Raja, N. I., Mashwani, Z. U. R., Hussain, M., Ejaz, M., Yasmeen, F. (2019). Effect of silver nanoparticles on growth of wheat under heat stress. Iranian J. Sci. Technol. Transact. A Sci., 43 (2), 387–395.10.1007/s40995-017-0417-4 Search in Google Scholar

Jiang, L., Ding, L., He, B., Shen, J., Xu, Z., Yin, M., Zhang, X. (2014). Systemic gene silencing in plants triggered by fluorescent nanoparticle-delivered double-stranded RNA. Nanoscale, 6, 9965.10.1039/C4NR03481C Search in Google Scholar

Joldersma, J., Liu, Z. (2018). Plant genetics enters the nano age? Nanoparticle-mediated plant transformation. J. Integr. Plant Biol., 60 (6). doi: 10.1111/jipb.12646.10.1111/jipb.1264629484813 Search in Google Scholar

Keerthana, P., Vijayakumar, S., Vidhya, E., Punitha, V. N., Nilavukkarasi, M., Praseetha, P. K. (2021). Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti-infection and growth promotion in plants. Industr. Crops Prod., 170, 113762.10.1016/j.indcrop.2021.113762 Search in Google Scholar

Keshari, A. K., Srivastava, R., Singh, P., Yadav, V. B., Nath, G. (2020). Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med., 11(1), 37–44.10.1016/j.jaim.2017.11.003712537030120058 Search in Google Scholar

Khan, I., Saeed, K., Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian J. Chem., 12 (7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.01110.1016/j.arabjc.2017.05.011 Search in Google Scholar

Kik, K., Bukowska, B., Sicińska, P. (2020). Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ. Pollut., 262, 114297.10.1016/j.envpol.2020.11429732155552 Search in Google Scholar

Kim, D. H., Gopal, J., Sivanesan, I. (2017). Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv., 7, 3649236505. doi: 10.1039/C7RA07025J.10.1039/C7RA07025J Search in Google Scholar

Kińska, K., Jiménez-Lamana, J., Kowalska, J., Krasnodębska-Ostręga, B., Szpunar, J. (2018). Study of the uptake and bioaccumulation of palladium nanoparticles by Sinapis alba using single particle ICP-MS. Sci. Total Environ., 615, 1078–1085.10.1016/j.scitotenv.2017.09.20329751411 Search in Google Scholar

Kokina, I., Gerbreders, V., Sledevskis, E., Bulanovs, A. (2013). Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J. Biotechnol., 165 (2), 127–132.10.1016/j.jbiotec.2013.03.011 Search in Google Scholar

Kokina, I., Jahundoviča, I., Mickeviča, I., Jermaļonoka, M., Strautiņš, J., Popovs, S., Ogurcovs, A., Sledevskis, E., Polyakov, B., Gerbreders, V. (2017a). Target transportation of auxin on mesoporous Au/SiO2 nano-particles as a method for somaclonal variation increasing in flax (L. usitatissimum L.). J. Nanomater., 2017, 7143269. https://doi.org/10.1155/2017/714326910.1155/2017/7143269 Search in Google Scholar

Kokina, I., Jahundoviča, I., Mickeviča, I., Sledevskis, E., Ogurcovs, A., Polyakov, B., Jermaļonoka, M., Strautiņš, J., Gerbreders, V. (2015). The impact of CdS nanoparticles on ploidy and DNA damage of rucola (Eruca sativa Mill.) plants. J. Nanomater., 2015, 470250.10.1155/2015/470250 Search in Google Scholar

Kokina, I., Mickeviča I., Jahundoviča, I., Ogurcovs, A., Krasovska, M., Jermaļonoka, M., Mihailova, M., Tamanis, E., Gerbreders, V. (2017b). Plant explants grown on medium supplemented with Fe3O4 nanoparticles have a significant increase in embryogenesis. J. Nanomater., 2017, 4587147. doi: 10.1155/2017/458714710.1155/2017/4587147 Search in Google Scholar

Kokina, I., Mickeviča,I., Jermaļonoka, M., Bankovska, L., Gerbreders, V., Ogurcovs, A., Jahundoviča, I. (2017c). Case study of somaclonal variation in resistance genes Mlo and Pme3 in flaxseed (Linum usitatissimum L.) induced by nanoparticles. Int. J. Genom., 2017, 1676874. https://doi.org/10.1155/2017/167687410.1155/2017/1676874534327528326314 Search in Google Scholar

Kokina, I., Sļedevskis, E., Gerbreders, V., Grauda, D., Jermaļonoka, M., Valaine, K., Gavarane, I., Pigiņka, I., Filipovičs, M., Rashal, I. (2012). Reaction of flax (Linum usitatissimum L.) calli culture to supplement of medium by carbon nanoparticles. Proc. Latvian Acad. Sci. Section B, 66 (4/5), 200–209.10.2478/v10046-012-0010-3 Search in Google Scholar

Kořenková, L., Šebesta, M., Urík, M., Kolenčík, M., Kratošová, G., Bujdoš, M., Vávra, I., Dobročka, E. (2017). Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agricult. Scand., Section B Soil Plant Sci., 67 (4), 285291.10.1080/09064710.2016.1267255 Search in Google Scholar

Kumar, U. J., Bahadur, V., Prasad, V. M., Mishra, S., Shukla, P. K. (2017). Effect of different concentrations of iron oxide and zinc oxide nano-particles on growth and yield of strawberry (Fragaria x ananassa Duch) cv. Chandler. Int. J. Curr. Microbiol. Appl. Sci., 6 (8), 24402445.10.20546/ijcmas.2017.608.288 Search in Google Scholar

Lee, W.-M., Kwak, J. I., An, Y.-J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere, 86 (5), 491499.10.1016/j.chemosphere.2011.10.01322075051 Search in Google Scholar

Luo, P, Roca, A., Tiede, K., Privett, K., Jiang, J., Pinkstone, J., Ma, G., Veinot, J., Boxall, A. (2018). Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems. J. Environ. Sci., 64, 62–71.10.1016/j.jes.2016.07.01929478662 Search in Google Scholar

Ma, X., Geisler-Lee, J., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ., 408, 3053–3061.10.1016/j.scitotenv.2010.03.03120435342 Search in Google Scholar

Ma, C., White, J. C., Zhao, J., Zhao, Q., Xing, B. (2018). Uptake of engineered nanoparticles by food crops: Characterization, mechanisms, and implications. Annu. Rev. Food Sci. Technol., 9, 129–53.10.1146/annurev-food-030117-01265729580140 Search in Google Scholar

Mady, M. F., Kelland, M. A. (2020). Review of nanotechnology impacts on oilfield scale management. ACS Appl. Nano Mater., 3 (8), 7343–7364.10.1021/acsanm.0c01391 Search in Google Scholar

Manesh, R. R., Grassi, G., Bergami, E., Marques-Santos, L. F., Faleri, C., Liberatori, G., Corsi, I. (2018). Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicol. Environ. Saf., 148, 359–366. doi: 10.1016/j.ecoenv.2017.10.051.10.1016/j.ecoenv.2017.10.05129096262 Search in Google Scholar

Martin-Ortigosa, S., Valenstein, J. S., Lin, V. S. Y., Trewyn, B. G., Wang, K. (2012). Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to pant cells via the biolistic method. Adv. Funct. Mater., 22, 3576–3582.10.1002/adfm.201200359 Search in Google Scholar

Mehrian, S. K., De Lima, R. (2016). Nanoparticles cyto and genotoxicity in plants: Mechanisms andabnormalities. Environ. Nanotechnol. Monit. Manag., 6, 184193.10.1016/j.enmm.2016.08.003 Search in Google Scholar

Minetto, D., Ghirardini, A.V., Libralato, G. (2016). Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C 60 engineered nanoparticles: An overview. Environ. Int., 92, 189–201.10.1016/j.envint.2016.03.04127107224 Search in Google Scholar

Moll, G., Gogos, A., Bucheli, T. D., Widmer, F., van der Heijden, M. G. (2016). Effect of nanoparticles on red clover and its symbiotic microorganisms. J. Nanobiotechnol., 14, 36. doi: 10.1186/s12951-016-0188-7.10.1186/s12951-016-0188-7486218627161241 Search in Google Scholar

Narendhran, S., Rajiv, P., Sivaraj, R. (2016). Toxicity of ZnO nanoparticles on germinating Sesamum indicum (Co-1) and their antibacterial activity. Bull. Mater. Sci., 39 (2), 415–421.10.1007/s12034-016-1172-4 Search in Google Scholar

Nuzhyna, N. V., Volch, I. R., Hnatiuk, I. S., Golubenko, A. V., Bannikov, M. A. (2017). Histological peculiarities of Triticum aestivum L. calli cultures’ morphogenesis under antibiotic Ceftriaxone influence. Cytol. Genet., 51 (3),149–154.10.3103/S0095452717030112 Search in Google Scholar

Pallavi, Mehta, C. M., Srivastava, R., Arora, S., Sharma, A. K. (2016). Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, 6 (2), 254.10.1007/s13205-016-0567-7512516028330326 Search in Google Scholar

Panpatte, D. G., Jhala, Y. K., Shelat, H. N., Vyas, R. V. (2016). Nano-particles: The next generation technology for sustainable agriculture. In: Singh, D. P. et al. (eds.). Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp. 289–300. doi: 10.1007/978-81-322-2644-4_18.10.1007/978-81-322-2644-4_18 Search in Google Scholar

Raliya, R., Nair, R., Chavalmane, S., Wang, W. N., Biswas, P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7, 1584–1594. doi: 10.1039/C5MT00168D.10.1039/C5MT00168D26463441 Search in Google Scholar

Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: Critical review. Frontiers Chem., 5, 78. doi: 10.3389/fchem.2017.00078.10.3389/fchem.2017.00078564347429075626 Search in Google Scholar

Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L., Adam, V. (2017). Nano-particles based on essential metals and their phytotoxicity. J. Nanobiotechnol., 15, 33. doi: 10.1186/s12951-017-0268-3.10.1186/s12951-017-0268-3540688228446250 Search in Google Scholar

Servin, A. D., White, J. C. (2016). Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact, 1, 9–12.10.1016/j.impact.2015.12.002 Search in Google Scholar

Shah, B. R., Mraz, J. (2020). Advances in nanotechnology for sustainable aquaculture and fisheries. Rev. Aquacult., 12 (2), 925–942.10.1111/raq.12356 Search in Google Scholar

Shahcheraghi, N., Golchin, H., Sadri, Z., Tabari, Y., Borhanifar, F., Makani, S. (2022). Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech., 12 (3), 1–24.10.1007/s13205-021-03108-9882884035186662 Search in Google Scholar

Sheikholeslami, M., Keshteli, A. N., Babazadeh, H. (2020). Nanoparticles favorable effects on performance of thermal storage units. J. Mol. Liquids, 300, 112329.10.1016/j.molliq.2019.112329 Search in Google Scholar

Shilpa, R., Laware, S. (2014). Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. App. Sci., 3 (2), 467–473. Search in Google Scholar

Sillen, W. M. A., Thijs, S., Abbamondi, G. R., Janssen, J., Weyens, N., White, J. C., Vangronsveld, J. (2015). Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol. Biochem., 91, 14–22.10.1016/j.soilbio.2015.08.019 Search in Google Scholar

Tang, Y., He, R., Zhao, J., Nie, G., Xu, L., Xing. B. (2016). Oxidative stressinduced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ. Pollut., 212, 605–614.10.1016/j.envpol.2016.03.01927016889 Search in Google Scholar

Tarrahi, R., Khataee, A., Movafeghi, A., Rezanejad, F. (2018). Toxicity of ZnSe nanoparticles to Lemna minor: Evaluation of biological responses. J. Environ Manag., 226, 298–307. doi: 10.1016/j.jenvman.2018.08.036.10.1016/j.jenvman.2018.08.03630125809 Search in Google Scholar

Tolaymat, T., El Badawy, A., Sequeira, R., Genaidy, A. (2015). A system-of-systems approach as a broad and integrated paradigm for sustainable engineered nanomaterials. Sci. Total Environ., 511, 595–607.10.1016/j.scitotenv.2014.09.02925590540 Search in Google Scholar

Torney, F., Trewyn, B. G., Lin, V. S., Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol., 2, 295–300.10.1038/nnano.2007.10818654287 Search in Google Scholar

Tortella, G. R., Rubilar, O., Durán, N., Diez, M. C., Martínez, M., Parada, J., Seabra, A. B. (2020). Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater., 390, 121974.10.1016/j.jhazmat.2019.12197432062374 Search in Google Scholar

Tripathi, D. K., Singh S., Singh S., Pandey R., Singh V. P., Sharma N. C., Prasad S. M., Dubey N. K., Chauhan D. K. (2017). An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem., 110, 2–12.10.1016/j.plaphy.2016.07.03027601425 Search in Google Scholar

Wang, L., Hu, C., Shao, L. (2017). The anti-microbial activity of nano-particles: Present situation and prospects for the future. Int. J. Nanomed., 12, 1227–1249. doi: 10.2147/IJN.S121956.10.2147/IJN.S121956531726928243086 Search in Google Scholar

Yang, A., Wu, J., Deng, C., Wang, T., Bian, P. (2018). Genotoxicity of zinc oxide nanoparticles in plants demonstrated using transgenic Arabidopsis thaliana. Bull. Environ. Contam. Toxicol., 101 (4), 514520. doi: 10.1007/s00128-018-2420-7.10.1007/s00128-018-2420-730128726 Search in Google Scholar

Yang, J., Cao, W., Rui, Y. (2017). Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms. J. Plant Interact., 12 (1), 158–169.10.1080/17429145.2017.1310944 Search in Google Scholar

Zhang, P. (2014). Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). J. Zhejiang Univ. SCIENCE A, 15 (8), 662670.10.1631/jzus.A1400114 Search in Google Scholar

Zhao, L., Sun, Y., Hernandez-Viezcas, J. A., Servin, A. D., Hong, J., Niu, G., Peralta-Videa, J. R., Duarte-Gardea, M., Gardea-Torresdey, J. L. (2013). Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study. J. Agric. Food Chem., 61 (49), 11945–11951.10.1021/jf404328e24245665 Search in Google Scholar

Zhao, X., Meng, Z., Wang, Y., Chen, W., Sun, C., Cui, B., Cui, J., Yu, M., Zeng, Z., Guo, S., Luo, D., Cheng, J. Q., Zhang, R., Cui, H. (2017). Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants, 3, 956–964.10.1038/s41477-017-0063-z29180813 Search in Google Scholar

eISSN:
2255-890X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
General Interest, Mathematics, General Mathematics