Zacytuj

Ajdanian, L., Aroiee, H., Azizi, M., Babaei, M., (2020). Changes in biochemical properties of tomato (cv. 240) affected by combination of blue/red optical spectra and Calfomyth spray (Ca and P). Int. J. Agric. Biol. Eng., 13 (5), 79–84. Search in Google Scholar

Alenazia, M. M., Shafiga, M., Alsadona, A. A., Alhelalc, I. M., Alhamdancb, A. M., Soleimana, T. H. I., Ibrahima, A. A., Shady, M. R., Al-Selweyaa, W. A. (2020). Improves functional and nutritional properties of tomato fruits during cold storage. Saudi J. Biol. Sci., 27, 1467–1474.10.1016/j.sjbs.2020.03.026725404132489282 Search in Google Scholar

Anton, D., Bender, I., Kaart, T., Roasto, M., Heinonen, M., Luik, A., Püssa, T. (2017). Changes in polyphenols contents and antioxidant capacities of organically andconventionally cultivated tomato (Solanum lycopersicum L.) fruits duringripening. Int. J. Analyt. Chem., 2017, 2367453. Search in Google Scholar

Antonious, G., Turley, E., Dawood, M. (2019). Ascorbic acid, sugars, phenols, and nitrates concentrations in tomato grown in animal manure amended soil. Agriculture (Switzerland), 9 (5), 94.10.3390/agriculture9050094 Search in Google Scholar

Asensio, E., Sanvicente, I., Mallor, C., Menal-Puey, S. (2019). Spanish traditional tomato. Effects of genotype, location and agronomic conditions on the nutritional quality and evaluation of consumer preferences. Food Chem., 270, 452–458.10.1016/j.foodchem.2018.07.13130174071 Search in Google Scholar

Barickman, T. C., Kopsell, D. A., Sams, C. E. (2017). Abscisic acid improves tomato fruit quality by increasing soluble sugar concentrations. J. Plant Nutr., 40 (7), 964–973.10.1080/01904167.2016.1231812 Search in Google Scholar

Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol., 63 (1), 129–140.10.1016/j.postharvbio.2011.05.016 Search in Google Scholar

Bojarska, J. E., Pilat, B., Majewsks, K. M., Sobiechowska, D. A., Narwojsz, A. (2020). Selected physical parameters and chemical compunds of different types of tomatos. Czech J. Food Sci., 38 (1), 28–35.10.17221/232/2019-CJFS Search in Google Scholar

Burton-Freeman, B., Reimers, K. (2011). Tomato consumption and health: Emerging benefits. Amer. J. Lifestyle Med., 5 (2), 182–191.10.1177/1559827610387488 Search in Google Scholar

Carli, P., Barone, A., Fogliano, V., Frusciante, L., Ercolano, M. R. (2011). Dissection of genetic and environmental factors involved in tomato organoleptic quality. BMC Plant Biol., 11, 58.10.1186/1471-2229-11-58308029421453463 Search in Google Scholar

Cortés-Olmos, C., Leiva-Brondo, M., Roselló, J., Raigónc, M. D., Cebolla-Cornejo, J. (2014). The role of traditional varieties of tomato as sources of functional compounds. J. Sci. Food Agric., 94 (14), 2888–2904.10.1002/jsfa.662924578266 Search in Google Scholar

Coyago Cruz, E., Corell, M., Moriana, A., Brahm, P. M., Hernanz, D., Stinco, C. M., Beltrán-Sinchiguano, E., Meléndez-Martínez, A. J. (2019). Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chem., 277, 480–489 Search in Google Scholar

Coyago-Cruz, E., Corell, M., Moriana, A., Hernanz, D., Stinco, C.M., Meléndez-Martķnez, A. J. (2017). Effect of the fruit position on the cluster on fruit quality,carotenoids, phenolics and sugars in cherry tomatoes (Solanum lycopersicum L.). Food Res. Int., 100, 804–813.10.1016/j.foodres.2017.08.00228873753 Search in Google Scholar

Dūma, M., Alsiņa, I., Dubova, L., Erdberga, I. (2018). Bioactive compounds in tomatoes at different stages of maturity. Proc. Latvian Acad. Sci., Section B, 72 (2), 85–90.10.2478/prolas-2018-0014 Search in Google Scholar

Flores, P., Sánchez, E., Fenoll, J., Hellķn, P. (2017). Genotypic variability of carotenoidsin traditional tomato cultivars. Food Res. Int., 100, 510–516.10.1016/j.foodres.2016.07.01428964375 Search in Google Scholar

Garande, V. K., Patil, R. S. (2014). Orange fruited tomato cultivars: Rich source of beta carotene. J. Hortic., 1, 1–5. Search in Google Scholar

Garcia, D., Narváez-Vásquez, J., Orozco-Cárdenas, M. L. (2017). Tomato (Solanum lycopersicum). In: Safety Assessment of Transgenic Organisms in the Environment, Volume 7: OECD Consensus Documents. OECD Publishing, Paris, pp. 69–104. Search in Google Scholar

Gorecka, D., Wawrzyniak. A., Jedrusek-Golinska, A., Dziedzic, K., Hamulka, J., Kowalczewski, P. L., Walkowiak, J. (2020). Lycopene in tomatoes and tomato products. Open Chem., 18, 752–756.10.1515/chem-2020-0050 Search in Google Scholar

Hasan, T., Sultana, M. (2017). Lycopene and cardiovascular diseases: A review of the literature. Int. J. Res. Rev., 4 (1), 73–86. Search in Google Scholar

Helyes, L., Pék, Z., Lugasi, A. (2008). Function of the variety technological traits and growing conditions on fruit components of tomato (Lycopersicon lycopersicum L. Karsten). Acta Aliment., 37 (4), 427–436.10.1556/AAlim.2008.0010 Search in Google Scholar

Iglesias, M. J., García-López, J., Collados-Luján, J. F., López-Ortiz, F., Díaz, M., Toresano, F., Camacho, F. (2015). Differential response to environmental and nutritional factors of high-quality tomato varieties. Food Chem., 176, 278–287.10.1016/j.foodchem.2014.12.04325624234 Search in Google Scholar

Kacjan Maršić, N., Gašperlin, L., Abram, V., Budić, M., Vidrih, R. (2011). Quality parameters and total phenolic content in tomato fruits regarding cultivar and microclimatic conditions. Turk. J. Agric. For., 35(2), 185–194. Search in Google Scholar

Kelkel, M., Schumacher, M., Dicato, M., Diederich, M. (2011). Antioxidant and anti-proliferative properties of lycopene. Free Radic. Res.,45 (8), 925–940.10.3109/10715762.2011.56416821615277 Search in Google Scholar

Kondratieva, I. Y., Golubkina, N. A. (2016). Lycopene and ß-carotene of tomato. Vegetable crops of Russia [Кондратьева И. Ю., Голубкина Н. А. Ликопин и ß-каротин томатоa. Овощu России], 33 (4), 80–83. Search in Google Scholar

Kotíková, Z., Lachman, J., Hejtmánková, A., Hejtmánková, K. (2011). Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. LWT -Food Sci. Technol., 44 (8), 1703–1710.10.1016/j.lwt.2011.03.015 Search in Google Scholar

Leopold, J. A. (2015). Antioxidants and coronary artery disease: From pathophysiology to preventive therapy. Coron. Artery Dis., 26 (2), 176–183.10.1097/MCA.0000000000000187431573725369999 Search in Google Scholar

Li, Y., Wang, H., Zhang, Y., Martin, C. (2018). Can the world’s favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? Plant Cell Rep., 37 (10), 1443–1450. Search in Google Scholar

Manzo, N., Pizzolongo, F., Meca, G., Aiello, A., Marchetti, N., Romano, R. (2018). Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO “Pomodorino Del Piennolo”. Molecules, 23 (2871), 1–13. Search in Google Scholar

Markovic, K., Hruškar, M., Vahčič, N. (2006). Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutr. Res. 26 (11), 556–560.10.1016/j.nutres.2006.09.010 Search in Google Scholar

Marti, R., Rosello, S., Cebolla-Cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancer (Basel), 8 (6), 58–67.10.3390/cancers8060058493162327331820 Search in Google Scholar

Mueller, L., Boehm, V. (2011). Antioxidant activity of ß-carotene compounds in different in vitro assays. Molecules, 16(2), 1055–1069.10.3390/molecules16021055 Search in Google Scholar

Nagata, M., Yamashita, I. (1992) Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J. Japan Food Sci Technol. 39, 925–928.10.3136/nskkk1962.39.925 Search in Google Scholar

Narvez, B., Letard, M., Graselly, D., Jost, M. (1999) Les criteres de qualite de la tomate. Infos-Ctifl. 155, 41-47. Search in Google Scholar

Nielsen, S. (2003). Food Analysis. 3rd ed. Kluwer Academic/Plenum Publishers, New-York. 534 pp. Search in Google Scholar

Nour, V., Ionica, M.E., Trandafir, I. (2015). Bioactive compounds, antioxidant activity and color of hydroponic tomato fruits at different stages of ripening. Not. Bot. Horti Agrob. Cluj-Napoca. 43, 404–412.10.15835/nbha43210081 Search in Google Scholar

Omotayo, T. C., Adedeji, O. (2015). Morphological survey of the fruits of the cultivated (Solanum lycopersicum Linn.) and wild (Solanum pimpinellifolium Miller) tomatoes in Ile-Ife, Nigeria. J. of Adv. Lab. Res. Biol. 6(1), 33–39. Search in Google Scholar

Peixoto, J. V. M., Neto, C. de M. S., Campos, L. F. C., Dourado, W. de S., Nogueira, A. P. O., Nascimento, A. dos R. (2017). Industrial tomato lines: Morphological properties and productivity. Genet. Mol. Res., 16 (2). doi: 10.4238/gmr16029540.10.4238/gmr16029540 Search in Google Scholar

Rodríguez-Ortega, W. M., Martínez, V., Nieves, M., Simón, I., Lidón, V., Fernandez-Zapata, J. C., Martinez-Nicolas, J. J., Cámara-Zapata, J. M., Garcķa-Sánchez, F. (2019). Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Sci. Rep., 9 (1), 6733. Search in Google Scholar

Sánchez-Rodríguez, E., Ruiz, J. M., Ferreres, F., Moreno, D. A. (2012). Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chem., 134 (2), 775–782.10.1016/j.foodchem.2012.02.180 Search in Google Scholar

Sen, S. (2019). The chemistry and biology of lycopene: Antioxidant for human health. Int. J. Adv. Life Sci. Res., 02 (04), 8–14.10.31632/ijalsr.2019v02i04.002 Search in Google Scholar

Singh, M., Prasanna, H. C., Tiwari, S., Gujjar, R. S., Karkute, S. G. (2016). Biology of Solanum lycopersicum (Tomato). Ministry of Environment, Forest and Climate Change Government of India, New Delhi. 48 pp. Search in Google Scholar

Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol., 29, 152–178.10.1016/S0076-6879(99)99017-1 Search in Google Scholar

Takacs, S., Pek, Z., Csanyi, D., Daood, H.G., Szuvandzsiev, P., Palotas, G., Helyes, L. (2020). Influence of water stress levels on the yield and lycopene content in tomatoes. Water, 12 (8), 2165, 1–17. Search in Google Scholar

Vallverdú-Queralt, A., Medina-Remón, A., Casals-Ribes, I., Andres-Lacueva, C., Waterhouse, A. L., Lamuela-Raventos, R. M. (2012). Effect of tomato industrial processing on phenolic profile and hydrophilic antioxidant capacity. LWT - Food Sci. Technol., 47 (1), 154–160.10.1016/j.lwt.2011.12.020 Search in Google Scholar

Wang, W., Guo, J., Zhang, J., Peng, J., Liu, T., Xin, Z. (2015). Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem., 171, 40–49.10.1016/j.foodchem.2014.08.095 Search in Google Scholar

Xie, B., Wei, J., Zhang, Yi, Song, S., Su, W., Sun, G., Hao, Y., Liu, H. (2019). Supplemental blue and red light promote lycopene synthesis in tomato fruits. J. Integr. Agric., 18 (3), 590–598.10.1016/S2095-3119(18)62062-3 Search in Google Scholar

eISSN:
2255-890X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
General Interest, Mathematics, General Mathematics