Otwarty dostęp

Auto-berthing Control for MSVs with a Time-based Generator under Actuator Faults: A Concise Neural Single-Parameter Approach

   | 22 cze 2024

Zacytuj

Shimizu S, Nishihara K, Miyauchi Y, et al. Automatic berthing using supervised learning and reinforcement learning. Ocean Engineering 265, 2022, doi: 10.1016/j.oceaneng.2022.112553. Search in Google Scholar

Sun T, Yin Y, Liu C. Integrated trajectory planning into automatic berthing control of underactuated ship based on fuzzy-backstepping method. Ocean Engineering, 291, 2024, doi: 10.1016/j.oceaneng.2023.116336. Search in Google Scholar

Zhang Y, Zhang M J, Zhang Q. Auto-berthing control of marine surface vehicle based on concise backstepping. IEEE Access 8:197059-197067, 2020, doi: 10.1109/ACCESS.2020.3034491. Search in Google Scholar

Peng Z H, Wang C, Yin Y, et al. Safety-certified constrained control of maritime autonomous surface ships for automatic berthing. IEEE Transactions on Vehicular Technology 72(7):8541-8552, 2023. Search in Google Scholar

Zhang Q, Zhu G, Hu X. Adaptive neural network auto-berthing control of marine ships. Ocean Engineering 177:40-48, 2019, doi: 10.1016/j.oceaneng.2019.02.031. Search in Google Scholar

Xia G Q, Xue J J, Sun C, et al. Backstepping control using barrier Lyapunov function for dynamic positioning control system with passive observer. Mathematical Problems in Engineering 2019, doi: 10.1155/2019/8709369. Search in Google Scholar

Yang H L, Deng F, He Y, et al. Robust nonlinear model predictive control for reference tracking of dynamic positioning ships based on nonlinear disturbance observer. Ocean Engineering 215, 2020, doi: 10.1016/j.oceaneng.2020.107885. Search in Google Scholar

Meng X F, Zhang G C, Zhang Q, Han B. Event-triggered adaptive command filtered trajectory tracking control for underactuated surface vessels based on multivariate finite-time disturbance observer under actuator faults and input saturation. Transactions of the Institute of Measurement and Control, 2023, doi: 10.1177/01423312231195657. Search in Google Scholar

Yu S L, Lu J S, Zhu G B, Yang SJ. Event-triggered finite-time tracking control of underactuated MSVs based on neural network disturbance observer. Ocean Engineering 253, 2022, doi:10.1016/j.oceaneng.2022.111169. Search in Google Scholar

Zhu G B, Ma Y, Hu S L. Single-parameter-learning-based finite-time tracking control of underactuated MSVs under input saturation. Control Engineering Practice 105, 2020, doi:10.1016/j.conengprac.2020.104652. Search in Google Scholar

Zhang Q, Zhang M J, Yang R M, et al. Adaptive neural finite-time trajectory tracking control of MSVs subject to uncertainties. International Journal of Control Automation and Systems 19(6):2238-2250, 2019. Search in Google Scholar

Meng X F, Zhang G C, Zhang Q. Robust adaptive neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs. Mathematical Biosciences and Engineering 20(2):2131-2156, 2023, doi:10.3934/mbe.2023099. Search in Google Scholar

Deng Y J, Zhang X K, Im N, Zhang G Q, Zhang Q. Model-based event-triggered tracking control of underactuated surface vessels with minimum learning parameters. IEEE Transactions on Neural Networks and Learning Systems 31(10):4001-4014, 2020, doi:10.1109/TNNLS.2019.2951709. Search in Google Scholar

Ma Y, Zhu G B, Li Z X. Error-driven-based nonlinear feedback recursive design for adaptive NN trajectory tracking control of surface ships with input saturation. IEEE Intelligent Transportation Systems Magazine 11(2):17-28, 2019, doi: 10.1109/MITS.2019.2903517. Search in Google Scholar

Zhu G B, Ma Y, Hu S L. Event-triggered adaptive PID fault-tolerant control of underactuated ASVS under saturation constraint. IEEE Transactions on Systems Man Cybernetics-Systems 53(8):4922-4933, 2023, doi:10.1109/TSMC.2023.3256538. Search in Google Scholar

Meng X F, Zhang G C, Han B. Fault-tolerant control of underactuated MSVs based on neural finite-time disturbance observer: An event-triggered mechanism. Journal of the Franklin Institute 361(4), 2024, doi: 10.1016/j. jfranklin.2024.01.004. Search in Google Scholar

Meng X F, Zhang G C, Zhang Q. Event-triggered trajectory tracking control of underactuated surface vessels with performance-improving mechanisms under input saturation and actuator faults. Transactions of the Institute of Measurement and Control 2023, doi:10.1177/01423312231187008. Search in Google Scholar

Fossen T I. Handbook of marine craft hydrodynamics and motion control. Wiley; 2011. Search in Google Scholar

Zhao K, Song Y, Wang Y. Regular error feedback based adaptive practical prescribed time tracking control of normal-form nonaffine systems. Journal of the Franklin Institute 356(5):2759-2779, 2019. Search in Google Scholar

Park B S, Kwon J W, Kim H. Neural network-based output feedback control for reference tracking of underactuated surface vessels. Automatica,77:353-359, 2017, doi: 10.1016/j. automatica.2016.11.024. Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Inżynieria, Wstępy i przeglądy, inne, Nauki o Ziemi, Nauki o atmosferze i klimatologia, Nauki biologiczne