Otwarty dostęp

Effect of Overflowing by Seawater on the Power of a Ship’s Photovoltaic Panels under Extensive Sea Waves


Zacytuj

International Maritime Organization, “ IMO strategy on reduction of GHG emissions from ships,” Annex 1 Resolution MEPC.377(80) Adopted on 7 July 2023. [Online]. Available: https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/Resolution%20MEPC.377%2880%29.pdf (accessed 28.07.2023) Search in Google Scholar

I. Kobougias, E. Tatakis, and J. Prousalidis, “PV systems installed in marine vessels: Technologies and specifications,” Adv. Power Electron., vol. 2013, pp. 1-8, doi.org/10.1155/2013/831560. Search in Google Scholar

“Nissan goes greener with new car carrier,” Motor Ship, No. 3, 2012. Search in Google Scholar

W. Laursen, “Putting solar technology into the hybrid mix,” No. 3, pp. 24-27, Apr. 2012. Search in Google Scholar

L. Hai, B. Yifei, W. Shuli, C. Y. David, H. Ying-Yi, D. Jinfeng, and P. Cheng, “Modeling and stability analysis of hybrid PV/diesel/ESS in ship power system,” Inventions, No. 1(1), 2016, doi:org/10.3390/inventions1010005. Search in Google Scholar

W. Zeńczak and Z. Zapałowicz, “Experimental research of the impact of ship’s rolling on the performance of PV panels,” Polish Maritime Research, vol. 29, 4(116), pp.132-144, 2022, doi. 10.2478/pomr-2022-0051. Search in Google Scholar

A. Shuklaa, K. Kanta, A. Sharmaa and P. H. Biwoleb, “ Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review,” Sol. Energy Mater. Sol. Cell, vol. 160, pp 275-286, 2017, https://doi.org/10.1016/j.solmat.2016.10.047. Search in Google Scholar

B. Moshfeg and M. Sandberg, “Investigation of the fluid flow and heat transfer in vertical channel heated from one side by PV elements, Part 1: Numerical study,” Renewable Energy, vol. 8, pp. 248-253, 1996, https://doi.org/10.1016/0960-1481(96)88856-2. Search in Google Scholar

M. Sandberg and B. Moshfegh, “Investigation of the fluid flow and heat transfer in vertical channel heated from one side by PV elements, Part 2: Experimental study,” Renewable Energy, vol. 8, pp. 254-258, 1996, https://doi.org/10.1016/0960-1481(96)88857-4. Search in Google Scholar

M. Sandberg and B. Moshfegh, “Ventilated-solar-roof air flow and heat transfer investigation,” Renewable Energy, vol. 15, pp. 287-292, 1998, https://doi.org/10.1016/S0960-1481(98)00175-X. Search in Google Scholar

K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Engineering Journal, vol. 4, pp. 869-877, 2013, https://doi.org/10.1016/j.asej.2013.03.005. Search in Google Scholar

H. Bahaidaraha, A. Subhana, P. Gandhidasana, and S. Rehmanb, “Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions,” Energy, vol. 59, pp. 445-453, 2013, https://doi.org/10.1016/j.energy.2013.07.050. Search in Google Scholar

S. Odeh and M. Behnia, “Improving photovoltaic module efficiency using water cooling,” Heat Transfer Engineering, vol. 30, no. 6, pp. 449-505, 2009, https://doi.org/10.1080/01457630802529214. Search in Google Scholar

M. K. Smith, H. Selbak, C. C. Wamser, N. U. Day, M. Krieske, D. J. Sailor, et al., “Water cooling method to improve the performance of field-mounted, insulated, and concentrating photovoltaic modules,” Journal of Solar Energy Engineering, vol. 136, no. 3, 2014, https://doi.org/10.1115/1.4026466. Search in Google Scholar

S. Krauter, “Increased electrical yield via water flow over the front of photovoltaic panels,” Solar Energy Materials and Solar Cells, vol. 82, pp. 131-137, 2004, doi:10.1016/j.solmat.2004.01.011 Search in Google Scholar

I. Erdoğan, K. Bilen, and S. Kivrak, “Experimental investigation of the efficiency of solar panel over which water film flows,” Journal of Politechnic, Politeknic Degrisi, 2023, doi: 10.2339/politeknik.1163785. Search in Google Scholar

D. M. K. Al-Jamea, I. Masalha, A. S. Alsabagh, O. Badran, H. Maaitah, and O. Mashaqbeh, “Investigation on water immersing and spraying for cooling PV panel,” International Review of Mechanical Engineering (I.R.E.M.E.), vol.16, no. 2, pp. 501-507, 2022, https://doi.org/10.15866/ireme.v16i9.22680. Search in Google Scholar

Z. A. Haidar, J. Orfi, and Z. Kaneesamkandi, “Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency,” Results in Physics, vol. 11, pp. 690-697, 2018, https://doi.org/10.1016/j.rinp.2018.10.016. Search in Google Scholar

L. A. Kumar, V. Indragandhi, Y. Teekaraman, R. Kuppusamy, and A. Radhakrishnan, “Design and implementation of automatic water spraying system for solar photovoltaic module,” Hindaw, Mathematical Problems in Engineering, vol. 2022, Article ID 7129610, https://doi.org/10.1155/2022/7129610. Search in Google Scholar

M. Nateqi, M. R. Zargarabadi, and R. Rafee, “Experimental investigations of spray flow rate and angle in enhancing the performance of PV panels by steady and pulsating water spray system,” SN Applied Sciences, vol. 3, p. 130, 2021, https://doi.org/10.1007/s42452-021-04169-4. Search in Google Scholar

F. Yesildal, A. N. Ozakin, and K. Yakut, “Optimization of operational parameters for a photovoltaic panel cooled by spray cooling,” Engineering Science and Technology, an International Journal, Vol. 25, 2022, https://doi.org/10.1016/j.jestch.2021.04.002. Search in Google Scholar

J. Siecker, K. Kusakana, and B. P. Numbi, “A review of solar photovoltaic systems cooling technologies,” Renew. Sustain. Energy Rev., vol. 79, pp. 192-203, 2017, https://doi.org/10.1016/j.rser.2017.05.053. Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences