Otwarty dostęp

Simulation Tests of a Drive Shaft and Propeller Control Subsystem for a Fast Boat


Zacytuj

T. H. Le et al., “Numerical investigation on the effect of trim on ship resistance by RANSE method,” Applied Ocean Research, vol. 111, 2021, doi: 10.1016/j.apor.2021.102642. Search in Google Scholar

S. Song, M. Terziev, T. Tezdogan, Y. K. Demirel, C. De Marco Muscat-Fenech, and A. Incecik, “Investigating roughness effects on ship resistance in shallow waters,” Ocean Engineering, vol. 270, 2023, doi: 10.1016/j.oceaneng.2023.113643. Search in Google Scholar

C. G. Källström and K. J. Åström, “Experiences of system identification applied to ship steering,” Automatica, vol. 17, no. 1, 1981, doi: 10.1016/0005-1098(81)90094-7. Search in Google Scholar

T. Perez, A. Ross, and T. Fossen, “A 4-DOF simulink model of a coastal patrol vessel for manoeuvring in waves,” in Proceedings of the 7th IFAC Conference on Manoeuvring and Control of Marine Craft, 2006. Search in Google Scholar

A. Dogrul, S. Song, and Y. K. Demirel, “Scale effect on ship resistance components and form factor,” Ocean Engineering, vol. 209, 2020, doi: 10.1016/j.oceaneng.2020.107428. Search in Google Scholar

S. Sutulo and C. Guedes Soares, “On the application of empiric methods for prediction of ship manoeuvring properties and associated uncertainties,” Ocean Engineering, vol. 186, 2019, doi: 10.1016/j.oceaneng.2019.106111. Search in Google Scholar

S. Tavakoli, S. Najafi, E. Amini, and A. Dashtimansh, “Ship acceleration motion under the action of a propulsion system: a combined empirical method for simulation and optimisation,” Journal of Marine Engineering and Technology, vol. 20, no. 3, 2021, doi: 10.1080/20464177.2020.1827490. Search in Google Scholar

Z. Świder, L. Trybus, and A. Stec, “Consistent Design of PID Controllers for an Autopilot,” Polish Maritime Research, vol. 30, no. 1, 2023, doi: 10.2478/pomr-2023-0008. Search in Google Scholar

E. V. (ed. ) Lewis, Principles of naval architecture. 2nd reversion, vol IlL Motions in waves and controllability, vol. 3. 1989. Search in Google Scholar

A. Stotsky and A. Forgo, “Recursive spline interpolation method for real time engine control applications,” Control Eng Pract, vol. 12, no. 4, 2004, doi: 10.1016/S0967-0661(03)00114-X. Search in Google Scholar

S. M. Sajedi and P. Ghadimi, “Experimental and Numerical Investigation of Stepped Planing Hulls in Finding an Optimized Step Location and Analysis of Its Porpoising Phenomenon,” Math Probl Eng, vol. 2020, 2020, doi: 10.1155/2020/3580491. Search in Google Scholar

“Some Other Classes of Numerical Methods,” in Partial Differential Equations with Numerical Methods, 2008. doi: 10.1007/978-3-540-88706-5_14. Search in Google Scholar

A. Esfandiari, A. Hosseini Monjezi, M. Rezakazemi, and M. Younas, “Computational fluid dynamic modeling of water desalination using low-energy continuous direct contact membrane distillation process,” Appl Therm Eng, vol. 163, 2019, doi: 10.1016/j.applthermaleng.2019.114391. Search in Google Scholar

L. Birk, “Holtrop and Mennen’s Method,” in Fundamentals of Ship Hydrodynamics, 2019. doi: 10.1002/9781119191575.ch50. Search in Google Scholar

Z. Dong, J. Li, W. Liu, H. Zhang, S. Qi, and Z. Zhang, “Adptive Heading Control of Underactuated Unmanned Surface Vehicle Based on Improved Backpropagation Neural Network,” Polish Maritime Research, vol. 30, no. 1, 2023, doi: 10.2478/pomr-2023-0006. Search in Google Scholar

T. C. My, L. D. Khanh, and P. M. Thao, “An Artificial Neural Networks (ANN) Approach for 3 Degrees of Freedom Motion Controlling,” International Journal on Informatics Visualization, vol. 7, no. 2, 2023, doi: 10.30630/joiv.7.2.1817. Search in Google Scholar

J. Yang, J. Feng, Y. Li, A. Liu, J. Hu, and Z. Ma, “Water-exit process modeling and added-mass calculation of the submarine-launched missile,” Polish Maritime Research, vol. 24, no. S3, 2017, doi: 10.1515/pomr-2017-0118. Search in Google Scholar

P. A. Wilson, “A review of the methods of calculation of added resistance for ships in a seaway,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 20, no. 1–3, 1985, doi: 10.1016/0167-6105(85)90018-2. Search in Google Scholar

S. Song et al., “Experimental investigation on the effect of heterogeneous hull roughness on ship resistance,” Ocean Engineering, vol. 223, 2021, doi: 10.1016/j.oceaneng.2021. 108590. Search in Google Scholar

D. Bailey, “The NPL Round Bilge Displacement Hull Series,” Maritime Technology Monograph No. 4. Royal Institution of Naval Architectcs. 1976. Search in Google Scholar

M. M. Bernitsas, D. Ray, and P. Kinley, “KT, KQ and efficiency curves for the wageningen b-series propellers,” 237. 1981. Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Inżynieria, Wstępy i przeglądy, inne, Nauki o Ziemi, Nauki o atmosferze i klimatologia, Nauki biologiczne