Otwarty dostęp

Energy Management Strategy Considering Energy Storage System Degradation for Hydrogen Fuel Cell Ship


Zacytuj

Z. Korczewski, “Test method for determining the chemical emissions of a marine diesel engine exhaust in operation,” Polish Maritime Research, 2021. doi:10.2478/pomr-2021-0035. Search in Google Scholar

M. Barakat, B. Tala-Ighil, H. Chaoui, H. Gualous, D. Hissel, “Energy Management of a Hybrid Tidal Turbine-Hydrogen Micro-Grid: Losses Minimization Strategy,” Fuel Cells, 2020. doi:10.1002/fuce.201900082. Search in Google Scholar

P. Geng, X. Y. Xu, T. Tarasiuk, “State of charge estimation method for lithium-ion batteries in all-electric ships based on LSTM neural network,” Polish Maritime Research, 2020. doi:10.2478/pomr-2020-0051. Search in Google Scholar

R. Zhao et al., “A numerical and experimental study of marine hydrogen-natural gas-diesel trifuel engines,” Polish Maritime Research, 2020. doi:10.2478/pomr-2020-0068. Search in Google Scholar

M. Rafiei, J. Boudjadar, M. H. Khooban, “Energy Management of a Zero-Emission Ferry Boat With a Fuel-Cell-Based Hybrid Energy System: Feasibility Assessment,” IEEE Trans. Ind. Electron., 2021. doi:10.1109/tie.2020.2992005. Search in Google Scholar

S. Faddel, A. A. Saad, M. E. Hariri, O. A. Mohammed, “Coordination of Hybrid Energy Storage for Ship Power Systems With Pulsed Loads,” IEEE Trans. Ind. Appl., 2020. doi:10.1109/tia.2019.2958293. Search in Google Scholar

S. Hasanvand, M. Rafiei, M. Gheisarnejad, M. H. Khooban, “Reliable Power Scheduling of an Emission-Free Ship: Multiobjective Deep Reinforcement Learning,” IEEE Trans. Transport. Electrif., 2020. doi:10.1109/tte.2020.2983247. Search in Google Scholar

P. Wu, J. Partridge, R. Bucknall, “Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships,” Applied Energy, 2020. doi:10.1016/j.apenergy.2020.115258. Search in Google Scholar

M. Banaei, J. Boudjadar, M. H. Khooban, “Stochastic Model Predictive Energy Management in Hybrid Emission-Free Modern Maritime Vessels,” IEEE Trans. Ind. Inform., 2021. doi:10.1109/tii.2020.3027808. Search in Google Scholar

J. Hou, Z. Y. Song, H. Hofmann, J. Sun, “Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids,” Energy Conversion and Management, 2019. doi:10.1016/j.enconman.2019.111929. Search in Google Scholar

M. Banaei, M. Rafiei, J. Boudjadar, M. H. Khooban, “A Comparative Analysis of Optimal Operation Scenarios in Hybrid Emission-Free Ferry Ships,” IEEE Trans. Transport. Electrif., 2020. doi:10.1109/tte.2020.2970674. Search in Google Scholar

J. Nunez Forestieri, M. Farasat, “Energy flow control and sizing of a hybrid battery/supercapacitor storage in MVDC shipboard power systems,” IET Electrical Systems in Transportation, 2020. doi:10.1049/iet-est.2019.0161. Search in Google Scholar

M. H. Khooban, M. Gheisarnejad, H. Farsizadeh, A. Masoudian, J. Boudjadar, “A New Intelligent Hybrid Control Approach for DC-DC Converters in Zero-Emission Ferry Ships,” IEEE Trans. Power. Electron., 2020. doi:10.1109/tpel.2019.2951183. Search in Google Scholar

T. H. Wang et al., “A Power Allocation Method for Multistack PEMFC System Considering Fuel Cell Performance Consistency,” IEEE Trans. Ind. Appl., 2020. doi:10.1109/tia.2020.3001254. Search in Google Scholar

J. Chen, C. Xu, C. Wu, W. Xu, “Adaptive Fuzzy Logic Control of Fuel-Cell-Battery Hybrid Systems for Electric Vehicles,” IEEE Trans. Ind. Inform., 2018. doi:10.1109/tii.2016.2618886. Search in Google Scholar

F. Balsamo, P. De Falco, F. Mottola, M. Pagano, “Power Flow Approach for Modeling Shipboard Power System in Presence of Energy Storage and Energy Management Systems,” IEEE Trans. Energy Convers., 2020. doi:10.1109/tec.2020.2997307. Search in Google Scholar

H. Ahmadi, M. Rafiei, M. A. Igder, M. Gheisarnejad, M. H. Khooban, “An Energy Efficient Solution for Fuel Cell Heat Recovery in Zero-Emission Ferry Boats: Deep Deterministic Policy Gradient,” IEEE Trans. Veh. Technol., 2021. doi:10.1109/tvt.2021.3094899. Search in Google Scholar

[18] A. Boveri, F. Silvestro, M. Molinas, E. Skjong. Optimal Sizing of Energy Storage Systems for Shipboard Applications. IEEE Trans. Energy Convers. 2019. doi:10.1109/TEC.2018.2882147. Search in Google Scholar

Y. Z. Zhang et al., “Real-Time Energy Management Strategy for Fuel Cell Range Extender Vehicles Based on Nonlinear Control,” IEEE Trans. Transport. Electrif., 2019. doi:10.1109/tte.2019.2958038. Search in Google Scholar

C. Lin, H. Mu, R. Xiong, W. X. Shen, “A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm,” Applied Energy, 2016. doi:10.1016/j.apenergy.2016.01.010. Search in Google Scholar

X. Y. Lu, H. Y. Wang, “Optimal Sizing and Energy Management for Cost-Effective PEV Hybrid Energy Storage Systems,” IEEE Trans. Ind. Inform., 2020. doi:10.1109/tii.2019.2957297. Search in Google Scholar

J. Park et al., “Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries,” Journal of Power Sources, 2017. doi:10.1016/j.jpowsour.2017.08.094. Search in Google Scholar

J. Wang et al., “Cycle-life model for graphite-LiFePO4 cells,” Journal of Power Sources, 2011. doi:10.1016/j.jpowsour.2010.11.134. Search in Google Scholar

M. Kalikatzarakis, R. D. Geertsma, E. J. Boonen, K. Visser, R. R. Negenborn, “Ship energy management for hybrid propulsion and power supply with shore charging,” Control Engineering Practice, 2018. doi:10.1016/j.conengprac.2018.04.009. Search in Google Scholar

H. Chen, Z. H. Zhang, C. Guan, H. B. Gao, “Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship,” Energy, 2020. doi:10.1016/j.energy.2020.117285. Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences