Otwarty dostęp

Investigation of the Efficiency of a Dual-Fuel Gas Turbine Combustion Chamber with a Plasma‒Chemical Element


Zacytuj

“Gas turbine power solutions minimize weight, footprint on FPSOs.” Accessed: Mar. 15, 2023. [Online]. Available: https://assets.siemens-energy.com/siemens/assets/api/uuid:91faa9eb-0a1e-4f9f-91c8-5a632f89c0da/offshoremagfpsos-eprint-1811off58-61.pdf Search in Google Scholar

M. Hammer, P. E. Wahl, R. Anantharaman, D. Berstad, and K. Y. Lervåg, “CO2 capture from off-shore gas turbines using supersonic gas separation,” Energy Procedia, vol. 63, pp. 243–252, 2014, doi: https://doi.org/10.1016/j.egypro.2014.11.026. Search in Google Scholar

Y. Gu and Y. Ju, “LNG-FPSO: Offshore LNG solution,” Frontiers of Energy and Power Engineering in China, vol. 2, no. 3, pp. 249–255, Jul. 2008, doi: https://doi.org/10.1007/s11708-008-0050-1. Search in Google Scholar

O. Cherednichenko, S. Serbin, and M. Dzida, “Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units,” Polish Maritime Research, vol. 26, no. 3, pp. 181–187, Sep. 2019, doi: https://doi.org/10.2478/pomr-2019-0059. Search in Google Scholar

O. Cherednichenko, S. Serbin, and M. Dzida, “Investigation of the combustion processes in the gas turbine module of an FPSO operating on associated gas conversion products,” Polish Maritime Research, vol. 26, no. 4, pp. 149–156, Dec. 2019, doi: https://doi.org/10.2478/pomr-2019-0077. Search in Google Scholar

S. Serbin, N. Washchilenko, M. Dzida, and J. Kowalski, “Parametric analysis of the efficiency of the combined gas-steam turbine unit of a hybrid cycle for the FPSO vessel,” Polish Maritime Research, vol. 28, no. 4, pp. 122–132, Dec. 2021, doi: https://doi.org/10.2478/pomr-2021-0054. Search in Google Scholar

S. Serbin, B. Diasamidze, and M. Dzida, “Investigations of the working process in a dual-fuel low-emission combustion chamber for an FPSO gas turbine engine,” Polish Maritime Research, vol. 27, no. 3, pp. 89–99, Sep. 2020, doi: https://doi.org/10.2478/pomr-2020-0050. Search in Google Scholar

S. Serbin, B. Diasamidze, V. Gorbov, and J. Kowalski, “Investigations of the emission characteristics of a dual-fuel gas turbine combustion chamber operating simultaneously on liquid and gaseous fuels,” Polish Maritime Research, vol. 28, no. 2, pp. 85–95, Jun. 2021, doi: https://doi.org/10.2478/pomr-2021-0025. Search in Google Scholar

A. J. Harrison and F. J. Weinberg, “Flame stabilization by plasma jets,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Jan. 19, 1971. https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1971.0015 [Accessed: Mar. 15, 2023]. Search in Google Scholar

N. A. Gatsenko and S. I. Serbin, “Arc plasmatrons for burning fuel in industrial installations,” Glass and Ceramics, vol. 51(11‒12), pp. 383–386, 1994, doi: https://doi.org/10.1007/BF00679821 Search in Google Scholar

S. I. Serbin, “Features of liquid-fuel plasma-chemical gasification for diesel engines,” IEEE Trans. Plasma Sci., vol. 34, no. 6, pp. 2488–2496, Dec. 2006, doi: https://doi.org/10.1109/tps.2006.876422. Search in Google Scholar

A. Yu. Starikovskii, N. B. Anikin, I. N. Kosarev, E. I. Mintoussov, S. M. Starikovskaia, and V. P. Zhukov, “Plasma-assisted combustion,” Pure and Applied Chemistry, vol. 78, no. 6, pp. 1265–1298, Jan. 2006, doi: https://doi.org/10.1351/pac200678061265. Search in Google Scholar

L. Massa and J. B. Freund, “Plasma-combustion coupling in a dielectric-barrier discharge actuated fuel jet,” Combustion and Flame, vol. 184, pp. 208–232, Oct. 2017, doi: https://doi.org/10.1016/j.combustflame.2017.06.008. Search in Google Scholar

D. K. Dinh, H. S. Kang, S. Jo, D. H. Lee, and Y.-H. Song, “Partial oxidation of diesel fuel by plasma – Kinetic aspects of the reaction,” International Journal of Hydrogen Energy, vol. 42, no. 36, pp. 22756–22764, Sep. 2017, doi: https://doi.org/10.1016/j.ijhydene.2017.07.164. Search in Google Scholar

S. Serbin, A. Mostipanenko, I. Matveev, and A. Tropina, “Improvement of the gas turbine plasma assisted combustor characteristics,” 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Jan. 2011, doi: https://doi.org/10.2514/6.2011-61. Search in Google Scholar

S. Serbin, A. Kozlovskyi, and K. Burunsuz, “Influence of plasma-chemical products on process stability in a low-emission gas turbine combustion chamber,” International Journal of Turbo & Jet-Engines, Jan. 2021, doi: https://doi.org/10.1515/tjj-2020-0046. Search in Google Scholar

S. I. Serbin, A. V. Kozlovskyi, and K. S. Burunsuz, “Investigations of nonstationary processes in low emissive gas turbine combustor with plasma assistance,” IEEE Trans. Plasma Sci., vol. 44, no. 12, pp. 2960–2964, Dec. 2016, doi: https://doi.org/10.1109/tps.2016.2607461. Search in Google Scholar

I. B. Matveev, S. A. Matveeva, E. Y. Kirchuk, S. I. Serbin, and V. G. Bazarov, “Plasma fuel nozzle as a prospective way to plasma-assisted combustion,” IEEE Trans. Plasma Sci., vol. 38, no. 12, pp. 3313–3318, Dec. 2010, doi: https://doi.org/10.1109/tps.2010.2063716. Search in Google Scholar

S. I. Serbin, “Modeling and experimental study of operation process in a gas turbine combustor with a plasma-chemical element,” Combustion Science and Technology, vol. 139, no. 1, pp. 137–158, Oct. 1998, doi: https://doi.org/10.1080/00102209808952084. Search in Google Scholar

S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, “Investigations of the working process in a ‘lean-burn’ gas turbine combustor with plasma assistance,” IEEE Trans. Plasma Sci., vol. 39, no. 12, pp. 3331–3335, Dec. 2011, doi: https://doi.org/10.1109/tps.2011.2166811. Search in Google Scholar

S. M. Mousavi, R. Kamali, F. Sotoudeh, N. Karimi, and B. J. Lee, “Numerical investigation of the plasma-assisted MILD combustion of a CH4/H2 fuel blend under various working conditions,” Journal of Energy Resources Technology, vol. 143, no. 6, Oct. 2020, doi: https://doi.org/10.1115/1.4048507. Search in Google Scholar

I. B. Matveev and S. I. Serbin, “Theoretical and experimental investigations of the plasma-assisted combustion and reformation system,” IEEE Trans. Plasma Sci., vol. 38, no. 12, pp. 3306–3312, Dec. 2010, doi: https://doi.org/10.1109/TPS.2010.2063713. Search in Google Scholar

I. B. Matveev and S. I. Serbin, “Modeling of the coal gasification processes in a hybrid plasma torch,” IEEE Trans. Plasma Sci., vol. 35, no. 6, pp. 1639–1647, Dec. 2007, doi: https://doi.org/10.1109/tps.2007.910134. Search in Google Scholar

B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence. London: Academic Press, 1972, ISBN 0124380506. Search in Google Scholar

I. B. Matveev, S. I. Serbin, V. V. Vilkul, N. A. Goncharova, “Synthesis gas afterburner based on an injector type plasma-assisted combustion system,” IEEE Trans. Plasma Sci., vol. 43, no. 12, pp. 3974‒3978, 2015, doi: https://doi.org/10.1109/TPS.2015.2475125. Search in Google Scholar

S. I. Serbin, I. B. Matveev, G. B. Mostipanenko, “Plasma-assisted reforming of natural gas for GTL: Part II – Modeling of the methane-oxygen reformer,” IEEE Trans. Plasma Sci., vol. 43, no. 12, pp. 3964‒3968, 2015, doi: https://doi.org/10.1109/TPS.2015.2438174. Search in Google Scholar

V. Yakhot and S. A. Orszag, “Renormalization group analysis of turbulence: I. Basic theory,” Journal of Scientific Computing, vol. 1, no. 1, pp. 3‒51, 1986. Search in Google Scholar

G. M. Faeth, “Structure and atomization properties of dense turbulent sprays,” Symp. (Int.) Combust., vol. 23, no. 1, pp. 1345–1352, 1991, https://doi.org/10.1016/S0082-0784(06)80399-1. Search in Google Scholar

G. Faeth, “Spray combustion models – A review,” 17th Aerospace Sciences Meeting, New Orleans, USA, 1979, https://doi.org/10.2514/6.1979-293. Search in Google Scholar

ANSYS Fluent Theory Guide. ANSYS, Inc., 2013. Search in Google Scholar

A. H. Lefebvre and D. R. Ballal, Gas turbine combustion: alternative fuels and emissions. CRC Press, 2010. Search in Google Scholar

K. Meredith and D. Black, “Automated global mechanism generation for use in CFD simulations,” 44th AIAA Aerospace Sciences Meeting and Exhibit, Jan. 2006, doi: https://doi.org/10.2514/6.2006-1168. Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences