Zacytuj

V. J. Jimenez, H. Kim, and Z. H. Munim, “A review of ship energy efficiency research and directions towards emission reduction in the maritime industry,” J. Clean. Prod., vol. 366, p. 132888, Sep. 2022, doi: 10.1016/j.jclepro.2022.132888. Open DOISearch in Google Scholar

A. T. Hoang, “Applicability of fuel injection techniques for modern diesel engines,” in International Conference on Sustainable Manufacturing, Materials and Technologies, ICSMMT 2019, 2020, p. 020018. doi: 10.1063/5.0000133. Open DOISearch in Google Scholar

T. a Boden, G. Marland, and R. J. Andres, “Global, Regional, and National Fossil-Fuel CO2 Emissions,” Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab. USA Oak Ridge TN Dep. Energy, 2009. Search in Google Scholar

I. A. Fernández, M. R. Gómez, J. R. Gómez, and L. M. López-González, “Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System,” Polish Marit. Res., vol. 27, no. 1, 2020, doi: 10.2478/pomr-2020-0009. Open DOISearch in Google Scholar

V. D. Bui and H. P. Nguyen, “Role of Inland Container Depot System in Developing the Sustainable Transport System,” Int. J. Knowledge-Based Dev., vol. 12, no. 3/4, p. 1, 2022, doi: 10.1504/IJKBD.2022.10053121. Open DOISearch in Google Scholar

A. Urbahs and V. Zavtkevics, “Oil Spill Detection Using Multi Remote Piloted Aircraft for the Environmental Monitoring of Sea Aquatorium,” Environ. Clim. Technol., vol. 24, no. 1, pp. 1–22, Jan. 2020, doi: 10.2478/rtuect-2020-0001. Open DOISearch in Google Scholar

X. P. Nguyen, D. T. Nguyen, V. V. Pham, and V. D. Bui, “Evaluation of the synergistic effect in wastewater treatment from ships by the advanced combination system,” Water Conserv. Manag., vol. 5, no. 1, pp. 60–65, 2021. Search in Google Scholar

D. T. Vo, X. P. Nguyen, T. D. Nguyen, R. Hidayat, T. T. Huynh, and D. T. Nguyen, “A review on the internet of thing (IoT) technologies in controlling ocean environment,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–19, Jul. 2021, doi: 10.1080/15567036.2021.1960932. Open DOISearch in Google Scholar

E. Lindstad, B. Lagemann, A. Rialland, G. M. Gamlem, and A. Valland, “Reduction of maritime GHG emissions and the potential role of E-fuels,” Transp. Res. Part D Transp. Environ., vol. 101, p. 103075, Dec. 2021, doi: 10.1016/j.trd.2021.103075. Open DOISearch in Google Scholar

P. Sharma et al., “Using response surface methodology approach for optimizing performance and emission parameters of diesel engine powered with ternary blend of Solketal-biodiesel-diesel,” Sustain. Energy Technol. Assessments, vol. 52, p. 102343, Aug. 2022, doi: 10.1016/j.seta.2022.102343. Open DOISearch in Google Scholar

Z. Wu and X. Xia, “Tariff-driven demand side management of green ship,” Sol. Energy, 2018, doi: 10.1016/j.solener.2018.06.033. Open DOISearch in Google Scholar

W. Tarełko, “The effect of hull biofouling on parameters characterising ship propulsion system efficiency,” Polish Marit. Res., 2014, doi: 10.2478/pomr-2014-0038. Open DOISearch in Google Scholar

H. P. Nguyen, N. D. K. Pham, and V. D. Bui, “Technical-Environmental Assessment of Energy Management Systems in Smart Ports,” Int. J. Renew. Energy Dev., vol. 11, no. 4, pp. 889–901, Nov. 2022, doi: 10.14710/ijred.2022.46300. Open DOISearch in Google Scholar

V. V. Pham and A. T. Hoang, “Analyzing and selecting the typical propulsion systems for ocean supply vessels,” 2020. doi: 10.1109/ICACCS48705.2020.9074276. Open DOISearch in Google Scholar

A. T. Hoang, V. D. Tran, V. H. Dong, and A. T. Le, “An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel,” J. Mar. Eng. Technol., vol. 21, no. 2, pp. 73–81, Mar. 2022, doi: 10.1080/20464177.2019.1595355. Open DOISearch in Google Scholar

H. P. Nguyen, P. Q. P. Nguyen, and T. P. Nguyen, “Green Port Strategies in Developed Coastal Countries as Useful Lessons for the Path of Sustainable Development: A case study in Vietnam,” Int. J. Renew. Energy Dev., vol. 11, no. 4, pp. 950–962, Nov. 2022, doi: 10.14710/ijred.2022.46539. Open DOISearch in Google Scholar

V. V. Pham, A. T. Hoang, and H. C. Do, “Analysis and evaluation of database for the selection of propulsion systems for tankers,” 2020. doi: 10.1063/5.0007655. Open DOISearch in Google Scholar

International Maritime Organization(IMO), “Third IMO GHG study executive summary,” 2014. Search in Google Scholar

International Maritime Organization(IMO), “MEPC 213 63.” Search in Google Scholar

International Maritime Organization(IMO), “Guıdelınes For The Development Of A Shıp Energy Effıcıency Management Plan (SEEMP).” Search in Google Scholar

International Maritime Organization(IMO), “MEPC 214 63.” Search in Google Scholar

International Maritime Organization(IMO), “Guıdelınes On The Method Of Calculatıon Of The Attaıned Energy Effıcıency Desıgn Index (EEDI) For New Shıps.” Search in Google Scholar

International Maritime Organization(IMO), “Prevention of Air Pollution from Ships,” 2005. Search in Google Scholar

V. D. Tran, A. T. Le, and A. T. Hoang, “An Experimental Study on the Performance Characteristics of a Diesel Engine Fueled with ULSD-Biodiesel Blends.,” Int. J. Renew. Energy Dev., vol. 10, no. 2, pp. 183–190, 2021. Search in Google Scholar

R. Adland, P. Cariou, H. Jia, and F. C. Wolff, “The energy efficiency effects of periodic ship hull cleaning,” J. Clean. Prod., 2018, doi: 10.1016/j.jclepro.2017.12.247. Open DOISearch in Google Scholar

H. Zeraatgar and M. H. Ghaemi, “The Analysis of Overall Ship Fuel Consumption in Acceleration Manoeuvre Using Hull-Propeller-Engine Interaction Principles and Governor Features,” Polish Marit. Res., vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0018. Open DOISearch in Google Scholar

H. Islam and G. Soares, “Effect of trim on container ship resistance at different ship speeds and drafts,” Ocean Eng., 2019, doi: 10.1016/j.oceaneng.2019.03.058. Open DOISearch in Google Scholar

X. P. Nguyen, “A simulation study on the effects of hull form on aerodynamic performances of the ships,” in Proceedings of the 2019 1st International Conference on Sustainable Manufacturing, Materials and Technologies, 2020, p. 020015. doi: 10.1063/5.0000140. Open DOISearch in Google Scholar

R. D. Ionescu, I. Szava, S. Vlase, M. Ivanoiu, and R. Munteanu, “Innovative Solutions for Portable Wind Turbines, Used on Ships,” Procedia Technol., 2015, doi: 10.1016/j.protcy.2015.02.102. Open DOISearch in Google Scholar

W.-H. Chen et al., “Optimization of a vertical axis wind turbine with a deflector under unsteady wind conditions via Taguchi and neural network applications,” Energy Convers. Manag., vol. 254, p. 115209, Feb. 2022, doi: 10.1016/j.enconman.2022.115209. Open DOISearch in Google Scholar

L. Pascali, “The Wind of Change: Maritime Technology, Trade, and Economic Development,” Am. Econ. Rev., vol. 107, no. 9, pp. 2821–2854, Sep. 2017, doi: 10.1257/aer.20140832. Open DOISearch in Google Scholar

H. Wang, E. Oguz, B. Jeong, and P. Zhou, “Life cycle and economic assessment of a solar panel array applied to a short route ferry,” J. Clean. Prod., 2019, doi: 10.1016/j.jclepro.2019.02.124. Open DOISearch in Google Scholar

W. Yu, P. Zhou, and H. Wang, “Evaluation on the energy efficiency and emissions reduction of a short-route hybrid sightseeing ship,” Ocean Eng., 2018, doi: 10.1016/j.oceaneng.2018.05.016. Open DOISearch in Google Scholar

M. N. Nyanya, H. B. Vu, A. Schönborn, and A. I. Ölçer, “Wind and solar assisted ship propulsion optimisation and its application to a bulk carrier,” Sustain. Energy Technol. Assessments, vol. 47, p. 101397, Oct. 2021, doi: 10.1016/j.seta.2021.101397. Open DOISearch in Google Scholar

X. P. Nguyen and V. H. Dong, “A study on traction control system for solar panel on vessels,” 2020, p. 020016. doi: 10.1063/5.0007708. Open DOISearch in Google Scholar

N. Alujevic, I. Catipovic, S. Malenica, I. Senjanovic, and N. Vladimir, “Ship roll control and energy harvesting using a U-tube anti-roll tank,” 2018. Search in Google Scholar

Y. Huo, X. Dong, and S. Beatty, “Cellular Communications in Ocean Waves for Maritime Internet of Things,” IEEE Internet Things J., vol. 7, no. 10, pp. 9965–9979, Oct. 2020, doi: 10.1109/JIOT.2020.2988634. Open DOISearch in Google Scholar

N. C. Shih, B. J. Weng, J. Y. Lee, and Y. C. Hsiao, “Development of a 20 kW generic hybrid fuel cell power system for small ships and underwater vehicles,” 2014. doi: 10.1016/j.ijhydene.2014.01.113. Open DOISearch in Google Scholar

H. Xing, C. Stuart, S. Spence, and H. Chen, “Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives,” Sustainability, vol. 13, no. 3, p. 1213, 2021. Search in Google Scholar

M. Jelić, V. Mrzljak, G. Radica, and N. Račić, “An alternative and hybrid propulsion for merchant ships: current state and perspective,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–33, Oct. 2021, doi: 10.1080/15567036.2021.1963354. Open DOISearch in Google Scholar

O. Konur, C. O. Colpan, and O. Y. Saatcioglu, “A comprehensive review on organic Rankine cycle systems used as waste heat recovery technologies for marine applications,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 2, pp. 4083–4122, Jun. 2022, doi: 10.1080/15567036.2022.2072981. Open DOISearch in Google Scholar

L. Mihanović, M. Jelić, G. Radica, and N. Račić, “EXPERIMENTAL INVESTIGATION OF MARINE ENGINE EXHAUST EMISSIONS,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–14, Dec. 2021, doi: 10.1080/15567036.2021.2013344. Open DOISearch in Google Scholar

Y. A. chaboki, A. Khoshgard, G. Salehi, and F. Fazelpour, “Thermoeconomic analysis of a new waste heat recovery system for large marine diesel engine and comparison with two other configurations,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–26, Jun. 2020, doi: 10.1080/15567036.2020.1781298. Open DOISearch in Google Scholar

S. Vakili, A. I. Ölçer, A. Schönborn, F. Ballini, and A. T. Hoang, “Energy‐related clean and green framework for shipbuilding community towards zero‐emissions: A strategic analysis from concept to case study,” Int. J. Energy Res., vol. 46, no. 14, pp. 20624–20649, Nov. 2022, doi: 10.1002/er.7649. Open DOISearch in Google Scholar

V. N. Armstrong and C. Banks, “Integrated approach to vessel energy efficiency,” Ocean Eng., 2015, doi: 10.1016/j.oceaneng.2015.10.024. Open DOISearch in Google Scholar

N. H. Phuong, “What solutions should be applied to improve the efficiency in the management for port system in Ho Chi Minh City,” Int. J. Innov. Creat. Chang., vol. 5, no. 2, pp. 1747–1769, 2019. Search in Google Scholar

V. Glavatskhih, A. Lapkin, L. Dmitrieva, I. Khodikova, and A. Golovin, “Ships’ energy efficiency management: organizational and economic aspect,” MATEC Web Conf., vol. 339, p. 01020, Jul. 2021, doi: 10.1051/matecconf/202133901020. Open DOISearch in Google Scholar

M. Stopford, Maritime economics: Third edition. 2008. doi: 10.4324/9780203891742. Open DOISearch in Google Scholar

M. H. Ghaemi and H. Zeraatgar, “Impact of Propeller Emergence on Hull, Propeller, Engine, and Fuel Consumption Performance in Regular Head Waves,” Polish Marit. Res., vol. 29, no. 4, pp. 56–76, Dec. 2022, doi: 10.2478/pomr-2022-0044. Open DOISearch in Google Scholar

M. S. Eide, T. Longva, P. Hoffmann, Ø. Endresen, and S. B. Dalsøren, “Future cost scenarios for reduction of ship CO2 emissions,” Marit. Policy Manag., 2011, doi: 10.1080/03088839.2010.533711. Open DOISearch in Google Scholar

Z. Yuan, J. Liu, Q. Zhang, Y. Liu, Y. Yuan, and Z. Li, “Prediction and optimisation of fuel consumption for inland ships considering real-time status and environmental factors,” Ocean Eng., vol. 221, p. 108530, Feb. 2021, doi: 10.1016/j.oceaneng.2020.108530. Open DOISearch in Google Scholar

T. Uyanık, Ç. Karatuğ, and Y. Arslanoğlu, “Machine learning approach to ship fuel consumption: A case of container vessel,” Transp. Res. Part D Transp. Environ., vol. 84, p. 102389, Jul. 2020, doi: 10.1016/j.trd.2020.102389. Open DOISearch in Google Scholar

E. Işıklı, N. Aydın, L. Bilgili, and A. Toprak, “Estimating fuel consumption in maritime transport,” J. Clean. Prod., vol. 275, p. 124142, Dec. 2020, doi: 10.1016/j.jclepro.2020.124142. Open DOISearch in Google Scholar

F. Cipollini, L. Oneto, A. Coraddu, A. J. Murphy, and D. Anguita, “Condition-Based Maintenance of Naval Propulsion Systems with supervised Data Analysis,” Ocean Engineering. 2018. doi: 10.1016/j.oceaneng.2017.12.002. Open DOISearch in Google Scholar

Y. Raptodimos and I. Lazakis, “Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications,” Ships Offshore Struct., 2018, doi: 10.1080/17445302.2018.1443694. Open DOISearch in Google Scholar

H. Bakır et al., “Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms,” J. Clean. Prod., vol. 360, p. 131946, Aug. 2022, doi: 10.1016/j.jclepro.2022.131946. Open DOISearch in Google Scholar

K. Wang et al., “A comprehensive review on the prediction of ship energy consumption and pollution gas emissions,” Ocean Eng., vol. 266, p. 112826, Dec. 2022, doi: 10.1016/j.oceaneng.2022.112826. Open DOISearch in Google Scholar

K. A. Chrysafis, I. N. Theotokas, and I. N. Lagoudis, “Managing fuel price variability for ship operations through contracts using fuzzy TOPSIS,” Res. Transp. Bus. Manag., vol. 43, p. 100778, Jun. 2022, doi: 10.1016/j.rtbm.2021.100778. Open DOISearch in Google Scholar

A. Fan, J. Yang, L. Yang, D. Wu, and N. Vladimir, “A review of ship fuel consumption models,” Ocean Eng., vol. 264, p. 112405, Nov. 2022, doi: 10.1016/j.oceaneng.2022.112405. Open DOISearch in Google Scholar

J.-G. Kim, H.-J. Kim, and P. T.-W. Lee, “Optimizing ship speed to minimize fuel consumption,” Transp. Lett., vol. 6, no. 3, pp. 109–117, Jul. 2014, doi: 10.1179/1942787514Y.0000000016. Open DOISearch in Google Scholar

S. Sherbaz and W. Duan, “Operational options for green ships,” J. Mar. Sci. Appl., vol. 11, no. 3, pp. 335–340, Sep. 2012, doi: 10.1007/s11804-012-1141-2. Open DOISearch in Google Scholar

J. A. Reggia and S. Tuhrim, Computer-assisted medical decision making. Springer Science & Business Media, 2012. Search in Google Scholar

B. Kawan, H. Wang, G. Li, and K. Chhantyal, “Data-driven Modeling of Ship Motion Prediction Based on Support Vector Regression,” Sep. 2017, pp. 350–354. doi: 10.3384/ecp17138350. Open DOISearch in Google Scholar

L. Zhang, Q. Meng, Z. Xiao, and X. Fu, “A novel ship trajectory reconstruction approach using AIS data,” Ocean Eng., vol. 159, pp. 165–174, Jul. 2018, doi: 10.1016/j.oceaneng.2018.03.085. Open DOISearch in Google Scholar

O. B. Öztürk and E. Başar, “Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping,” Ocean Eng., vol. 243, p. 110209, Jan. 2022, doi: 10.1016/j.oceaneng.2021.110209. Open DOISearch in Google Scholar

J. Hadi, Z. Y. Tay, and D. Konovessis, “Ship Navigation and Fuel Profiling based on Noon Report using Neural Network Generative Modeling,” J. Phys. Conf. Ser., vol. 2311, no. 1, p. 012005, Jul. 2022, doi: 10.1088/1742-6596/2311/1/012005. Open DOISearch in Google Scholar

B. Ban, J. Yang, P. Chen, J. Xiong, and Q. Wang, “Ship Track Regression Based on Support Vector Machine,” IEEE Access, vol. 5, pp. 18836–18846, 2017, doi: 10.1109/ACCESS.2017.2749260. Open DOISearch in Google Scholar

M. Bentin, D. Zastrau, M. Schlaak, D. Freye, R. Elsner, and S. Kotzur, “A New Routing Optimization Tool-influence of Wind and Waves on Fuel Consumption of Ships with and without Wind Assisted Ship Propulsion Systems,” Transp. Res. Procedia, vol. 14, pp. 153–162, 2016, doi: 10.1016/j.trpro.2016.05.051. Open DOISearch in Google Scholar

M. Haranen, P. Pakkanen, R. Kariranta, and J. Salo, “White, Grey and Black-Box Modelling in Ship Performance Evaluation,” 1st Hull Performence Insight Conf., 2016. Search in Google Scholar

M. L. Fam, Z. Y. Tay, and D. Konovessis, “An Artificial Neural Network for fuel efficiency analysis for cargo vessel operation,” Ocean Eng., vol. 264, p. 112437, Nov. 2022, doi: 10.1016/j.oceaneng.2022.112437. Open DOISearch in Google Scholar

“The MIT encyclopedia of the cognitive sciences,” Choice Rev. Online, 1999, doi: 10.5860/choice.37-1902. Open DOISearch in Google Scholar

I. H. Witten, E. Frank, and M. a. Hall, Data Mining: Practical Machine Learning Tools and Techniques, Third Edition. 2011. Search in Google Scholar

P. Karagiannidis and N. Themelis, “Data-driven modelling of ship propulsion and the effect of data pre-processing on the prediction of ship fuel consumption and speed loss,” Ocean Eng., vol. 222, p. 108616, Feb. 2021, doi: 10.1016/j.oceaneng.2021.108616. Open DOISearch in Google Scholar

G. Lampropoulos, “Artificial Intelligence, Big Data, and Machine Learning in Industry 4.0,” in Encyclopedia of Data Science and Machine Learning, IGI Global, 2022, pp. 2101–2109. doi: 10.4018/978-1-7998-9220-5.ch125. Open DOISearch in Google Scholar

K. Karunamurthy, A. A. Janvekar, P. L. Palaniappan, V. Adhitya, T. T. K. Lokeswar, and J. Harish, “Prediction of IC engine performance and emission parameters using machine learning: A review,” J. Therm. Anal. Calorim., Jan. 2023, doi: 10.1007/s10973-022-11896-2. Open DOISearch in Google Scholar

P. Sharma, “Data-driven predictive model development for efficiency and emission characteristics of a diesel engine fueled with biodiesel/diesel blends,” in Artificial Intelligence for Renewable Energy Systems, Elsevier, 2022, pp. 329–352. doi: 10.1016/B978-0-323-90396-7.00005-5. Open DOISearch in Google Scholar

M. B. Patel, J. N. Patel, and U. M. Bhilota, “Comprehensive Modelling of ANN,” in Research Anthology on Artificial Neural Network Applications, IGI Global, 2022, pp. 31–40. doi: 10.4018/978-1-6684-2408-7.ch002. Open DOISearch in Google Scholar

Z. Tian and S. Fong, “Survey of meta-heuristic algorithms for deep learning training,” Optim. algorithms—methods Appl., 2016. Search in Google Scholar

W.-H. Chen et al., “A comparative analysis of biomass torrefaction severity index prediction from machine learning,” Appl. Energy, vol. 324, p. 119689, Oct. 2022, doi: 10.1016/j.apenergy.2022.119689. Open DOISearch in Google Scholar

O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, Nov. 2018, doi: 10.1016/j.heliyon.2018.e00938. Open DOISearch in Google Scholar

O. I. Abiodun et al., “Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition,” IEEE Access, vol. 7, pp. 158820–158846, 2019, doi: 10.1109/ACCESS.2019.2945545. Open DOISearch in Google Scholar

J.-H. Kim, Y. Kim, and W. Lu, “Prediction of ice resistance for ice-going ships in level ice using artificial neural network technique,” Ocean Eng., vol. 217, p. 108031, Dec. 2020, doi: 10.1016/j.oceaneng.2020.108031. Open DOISearch in Google Scholar

S. Gan, S. Liang, K. Li, J. Deng, and T. Cheng, “Ship trajectory prediction for intelligent traffic management using clustering and ANN,” in 2016 UKACC 11th International Conference on Control (CONTROL), Aug. 2016, pp. 1–6. doi: 10.1109/CONTROL.2016.7737569. Open DOISearch in Google Scholar

N. Gupta, “Artificial neural network,” Netw. Complex Syst., vol. 3, no. 1, pp. 24–28, 2013. Search in Google Scholar

I. Veza et al., “Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine,” Alexandria Eng. J., vol. 61, no. 11, pp. 8363–8391, Nov. 2022, doi: 10.1016/j.aej.2022.01.072. Open DOISearch in Google Scholar

M. Sharifzadeh, A. Sikinioti-Lock, and N. Shah, “Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression,” Renew. Sustain. Energy Rev., vol. 108, pp. 513–538, Jul. 2019, doi: 10.1016/j.rser.2019.03.040. Open DOISearch in Google Scholar

A. Gopi, P. Sharma, K. Sudhakar, W. K. Ngui, I. Kirpichnikova, and E. Cuce, “Weather Impact on Solar Farm Performance: A Comparative Analysis of Machine Learning Techniques,” Sustainability, vol. 15, no. 1, p. 439, Dec. 2022, doi: 10.3390/su15010439. Open DOISearch in Google Scholar

P. Sharma and B. J. Bora, “A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries,” Batteries, vol. 9, no. 1, p. 13, Dec. 2022, doi: 10.3390/batteries9010013. Open DOISearch in Google Scholar

I. . Basheer and M. Hajmeer, “Artificial neural networks: fundamentals, computing, design, and application,” J. Microbiol. Methods, vol. 43, no. 1, pp. 3–31, Dec. 2000, doi: 10.1016/S0167-7012(00)00201-3. Open DOISearch in Google Scholar

A. D. Dongare, R. R. Kharde, and A. D. Kachare, “Introduction to artificial neural network,” Int. J. Eng. Innov. Technol., vol. 2, no. 1, pp. 189–194, 2012. Search in Google Scholar

P. Dey, A. Sarkar, and A. K. Das, “Development of GEP and ANN model to predict the unsteady forced convection over a cylinder,” Neural Comput. Appl., vol. 27, no. 8, pp. 2537–2549, Nov. 2016, doi: 10.1007/s00521-015-2023-8. Open DOISearch in Google Scholar

B. Maleki, B. Singh, H. Eamaeili, Y. K. Venkatesh, S. S. A. Talesh, and S. Seetharaman, “Transesterification of waste cooking oil to biodiesel by walnut shell/sawdust as a novel, low-cost and green heterogeneous catalyst: Optimization via RSM and ANN,” Ind. Crops Prod., vol. 193, p. 116261, Mar. 2023, doi: 10.1016/j.indcrop.2023.116261. Open DOISearch in Google Scholar

A. G. R. Vaz, B. Elsinga, W. G. J. H. M. van Sark, and M. C. Brito, “An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands,” Renew. Energy, vol. 85, pp. 631–641, Jan. 2016, doi: 10.1016/j.renene.2015.06.061. Search in Google Scholar

R. J. Kuo, C. H. Chen, and Y. C. Hwang, “An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network,” Fuzzy Sets Syst., vol. 118, no. 1, pp. 21–45, Feb. 2001, doi: 10.1016/S0165-0114(98)00399-6. Search in Google Scholar

J. C. Fernández, L. B. Corrales, I. F. Benítez, and J. R. Núñez, “Fault Diagnosis of Combustion Engines in MTU 16VS4000-G81 Generator Sets Using Fuzzy Logic: An Approach to Normalize Specific Fuel Consumption,” 2022, pp. 17–29. doi: 10.1007/978-3-030-98457-1_2. Search in Google Scholar

C. W. Mohd Noor, R. Mamat, G. Najafi, M. H. Mat Yasin, C. K. Ihsan, and M. M. Noor, “Prediction of marine diesel engine performance by using artificial neural network model,” J. Mech. Eng. Sci., vol. 10, no. 1, pp. 1917–1930, Jun. 2016, doi: 10.15282/jmes.10.1.2016.15.0183. Search in Google Scholar

Keh-Kim Kee, Boung-Yew Lau Simon, and K.-H. Y. Renco, “Artificial neural network back-propagation based decision support system for ship fuel consumption prediction,” in 5th IET International Conference on Clean Energy and Technology (CEAT2018), 2018, pp. 13 (6 pp.)-13 (6 pp.). doi: 10.1049/cp.2018.1306. Search in Google Scholar

B. Panda and A. Ghoshal, “An ANN based switching network for optimally selected photovoltaic array with battery and supercapacitor to mitigate the effect of intermittent solar irradiance,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 3, pp. 5784–5811, Sep. 2022, doi: 10.1080/15567036.2022.2088897. Search in Google Scholar

J. Zou, Y. Han, and S.-S. So, “Overview of Artificial Neural Networks,” in Artificial Neural Networks. Methods in Molecular Biology, 2008, pp. 14–22. doi: 10.1007/978-1-60327-101-1_2. Search in Google Scholar

S. Al-Dahidi, J. Adeeb, O. Ayadi, M. Alrbai, and L. Al-Ghussain, “A feature transformation and extraction approach-based artificial neural network for an improved production prediction of grid-connected solar photovoltaic systems,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 4, pp. 9232–9254, Dec. 2022, doi: 10.1080/15567036.2022.2128475. Search in Google Scholar

Z. Yuan, J. Liu, Y. Liu, Y. Yuan, Q. Zhang, and Z. Li, “Fitting Analysis of Inland Ship Fuel Consumption Considering Navigation Status and Environmental Factors,” IEEE Access, vol. 8, pp. 187441–187454, 2020, doi: 10.1109/ACCESS.2020.3030614. Search in Google Scholar

T. Cepowski and P. Chorab, “The Use of Artificial Neural Networks to Determine the Engine Power and Fuel Consumption of Modern Bulk Carriers, Tankers and Container Ships,” Energies, vol. 14, no. 16, p. 4827, Aug. 2021, doi: 10.3390/en14164827. Search in Google Scholar

Y. B. A. Farag and A. I. Ölçer, “The development of a ship performance model in varying operating conditions based on ANN and regression techniques,” Ocean Eng., vol. 198, p. 106972, Feb. 2020, doi: 10.1016/j.oceaneng.2020.106972. Search in Google Scholar

T. Zhou, Q. Hu, Z. Hu, and R. Zhen, “An adaptive hyper parameter tuning model for ship fuel consumption prediction under complex maritime environments,” J. Ocean Eng. Sci., vol. 7, no. 3, pp. 255–263, Jun. 2022, doi: 10.1016/j.joes.2021.08.007. Search in Google Scholar

W. Tarelko and K. Rudzki, “Applying artificial neural networks for modelling ship speed and fuel consumption,” Neural Computing and Applications, vol. 32, no. 23. 2020. doi: 10.1007/s00521-020-05111-2. Search in Google Scholar

A. Coraddu, L. Oneto, F. Baldi, and D. Anguita, “Vessels fuel consumption forecast and trim optimisation: A data analytics perspective,” Ocean Engineering. 2017. doi: 10.1016/j.oceaneng.2016.11.058. Search in Google Scholar

L. T. Leifsson, H. Sævarsdóttir, S. T. Sigurdsson, and A. Vésteinsson, “Grey-box modeling of an ocean vessel for operational optimization,” Simul. Model. Pract. Theory, 2008, doi: 10.1016/j.simpat.2008.03.006. Search in Google Scholar

L. Ljung, “Black-box models from input-output measurements,” 2001. doi: 10.1109/imtc.2001.928802. Search in Google Scholar

L. Yang, G. Chen, N. G. M. Rytter, J. Zhao, and D. Yang, “A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping,” Ann. Oper. Res., 2019, doi: 10.1007/s10479-019-03183-5. Search in Google Scholar

F. Baldi, Modelling, analysis and optimisation of ship energy systems. Chalmers University of Technology, 2016. Search in Google Scholar

C. Gkerekos and I. Lazakis, “A novel, data-driven heuristic framework for vessel weather routing,” Ocean Eng., vol. 197, p. 106887, Feb. 2020, doi: 10.1016/j.oceaneng.2019.106887. Search in Google Scholar

R. Lu, O. Turan, E. Boulougouris, C. Banks, and A. Incecik, “A semi-empirical ship operational performance prediction model for voyage optimization towards energy efficient shipping,” Ocean Eng., vol. 110, 2015, doi: 10.1016/j.oceaneng.2015.07.042. Search in Google Scholar

F. Tillig, J. W. Ringsberg, W. Mao, and B. Ramne, “A generic energy systems model for efficient ship design and operation,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 231, no. 2, 2017, doi: 10.1177/1475090216680672. Search in Google Scholar

B. P. Pedersen and J. Larsen, “Modeling of Ship Propulsion Performance,” World Marit. Technol. Conf., 2009. Search in Google Scholar

B. P. Pedersen and J. Larsen, “Prediction of full-scale propulsion power using artificial neural networks,” Proc. 8th Int. Conf. Comput. IT Appl. Marit. Ind., pp. 537–550, 2009. Search in Google Scholar

J. P. Petersen, D. J. Jacobsen, and O. Winther, “Statistical modelling for ship propulsion efficiency,” J. Mar. Sci. Technol., 2012, doi: 10.1007/s00773-011-0151-0. Search in Google Scholar

E. Bal Beşikçi, O. Arslan, O. Turan, and A. I. Ölçer, “An artificial neural network based decision support system for energy efficient ship operations,” Comput. Oper. Res., 2016, doi: 10.1016/j.cor.2015.04.004. Search in Google Scholar

K. Rudzki and W. Tarelko, “A decision-making system supporting selection of commanded outputs for a ship’s propulsion system with a controllable pitch propeller,” Ocean Eng., 2016, doi: 10.1016/j.oceaneng.2016.09.018. Search in Google Scholar

J. P. Petersen, O. Winther, and D. J. Jacobsen, “A Machine-Learning Approach to Predict Main Energy Consumption under Realistic Operational Conditions,” Sh. Technol. Res., vol. 59, no. 1, pp. 64–72, Jan. 2012, doi: 10.1179/str.2012.59.1.007. Search in Google Scholar

B. P. Pedersen and J. Larsen, “Gaussian Process Regression for Vessel Performance Monitoring,” Compit, 2013. Search in Google Scholar

Journée, J. M. J., Rijke, R. J., Verleg, and G. J. H., “Marine performance surveillance with a personal computer,” Delft, Netherlands Delft Univ. Technol., 1987. Search in Google Scholar

X. Wang, Z. Zou, L. Yu, and W. Cai, “System identification modeling of ship manoeuvring motion in 4 degrees of freedom based on support vector machines,” China Ocean Eng., vol. 29, no. 4, pp. 519–534, Jun. 2015, doi: 10.1007/s13344-015-0036-9. Search in Google Scholar

L. Þ. Leifsson, H. Sævarsdóttir, S. Þ. Sigurðsson, and A. Vésteinsson, “Grey-box modeling of an ocean vessel for operational optimization,” Simul. Model. Pract. Theory, vol. 16, no. 8, pp. 923–932, Sep. 2008, doi: 10.1016/j.simpat.2008.03.006. Search in Google Scholar

C.-K. Lin and H.-J. Shaw, “Preliminary parametric estimation of steel weight for new ships,” J. Mar. Sci. Technol., vol. 21, no. 2, pp. 227–239, Jun. 2016, doi: 10.1007/s00773-015-0345-y. Search in Google Scholar

Q. Meng, Y. Du, and Y. Wang, “Shipping log data based container ship fuel efficiency modeling,” Transp. Res. Part B Methodol., 2016, doi: 10.1016/j.trb.2015.11.007. Search in Google Scholar

L. Chen, P. Yang, S. Li, Y. Tian, G. Liu, and G. Hao, “Grey-box identification modeling of ship maneuvering motion based on LS-SVM,” Ocean Eng., vol. 266, p. 112957, Dec. 2022, doi: 10.1016/j.oceaneng.2022.112957. Search in Google Scholar

L. G. Aldous, “Ship operational efficiency: performance models and uncertainty analysis.” UCL (University College London), 2016. Search in Google Scholar

S. K. Paul, S. Asian, M. Goh, and S. A. Torabi, “Managing sudden transportation disruptions in supply chains under delivery delay and quantity loss,” Ann. Oper. Res., 2019, doi: 10.1007/s10479-017-2684-z. Search in Google Scholar

A. Rezaei Somarin, S. Chen, S. Asian, and D. Z. W. Wang, “A heuristic stock allocation rule for repairable service parts,” Int. J. Prod. Econ., 2017, doi: 10.1016/j.ijpe.2016.11.013. Search in Google Scholar

C. G. Moles, P. Mendes, and J. R. Banga, “Parameter estimation in biochemical pathways: A comparison of global optimization methods,” Genome Research. 2003. doi: 10.1101/gr.1262503. Search in Google Scholar

M. Schwaab, E. C. Biscaia, J. L. Monteiro, and J. C. Pinto, “Nonlinear parameter estimation through particle swarm optimization,” Chem. Eng. Sci., 2008, doi: 10.1016/j.ces.2007.11.024. Search in Google Scholar

I. Veza et al., “Multi-objective optimization of diesel engine performance and emission using grasshopper optimization algorithm,” Fuel, vol. 323, p. 124303, Sep. 2022, doi: 10.1016/j.fuel.2022.124303. Search in Google Scholar

I. Veza et al., “Grasshopper optimization algorithm for diesel engine fuelled with ethanol-biodiesel-diesel blends,” Case Stud. Therm. Eng., vol. 31, p. 101817, Mar. 2022, doi: 10.1016/j.csite.2022.101817. Search in Google Scholar

H. Orouji, O. B. Haddad, E. Fallah-Mehdipour, and M. A. Mariño, “Estimation of Muskingum parameter by meta-heuristic algorithms,” Proc. Inst. Civ. Eng. Water Manag., 2013, doi: 10.1680/wama.11.00068. Search in Google Scholar

D. F. Alam, D. A. Yousri, and M. B. Eteiba, “Flower Pollination Algorithm based solar PV parameter estimation,” Energy Convers. Manag., 2015, doi: 10.1016/j.enconman.2015.05.074. Search in Google Scholar

H. Lee, N. Aydin, Y. Choi, S. Lekhavat, and Z. Irani, “A decision support system for vessel speed decision in maritime logistics using weather archive big data,” Comput. Oper. Res., vol. 98, pp. 330–342, Oct. 2018, doi: 10.1016/j.cor.2017.06.005. Search in Google Scholar

K. Fagerholt, “A computer-based decision support system for vessel fleet scheduling—experience and future research,” Decis. Support Syst., vol. 37, no. 1, pp. 35–47, 2004. Search in Google Scholar

M. H. Shamsi, U. Ali, E. Mangina, and J. O’Donnell, “A framework for uncertainty quantification in building heat demand simulations using reduced-order grey-box energy models,” Appl. Energy, vol. 275, p. 115141, Oct. 2020, doi: 10.1016/j.apenergy.2020.115141. Search in Google Scholar

O. Loyola-Gonzalez, “Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View,” IEEE Access, vol. 7, pp. 154096–154113, 2019, doi: 10.1109/ACCESS.2019.2949286. Search in Google Scholar

M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning,” in 2019 IEEE Symposium on Security and Privacy (SP), May 2019, pp. 739–753. doi: 10.1109/SP.2019.00065. Search in Google Scholar

Y.-Y. Zhang, Z.-H. Wang, and Z.-J. Zou, “Black-box modeling of ship maneuvering motion based on multi-output nu-support vector regression with random excitation signal,” Ocean Eng., vol. 257, p. 111279, 2022. Search in Google Scholar

N. Asproulis and D. Drikakis, “An artificial neural network-based multiscale method for hybrid atomistic-continuum simulations,” Microfluid. Nanofluidics, 2013, doi: 10.1007/s10404-013-1154-4. Search in Google Scholar

N. Asproulis and D. Drikakis, “Nanoscale materials modelling using neural networks,” J. Comput. Theor. Nanosci., vol. 6, no. 3, pp. 514–518, 2009. Search in Google Scholar

G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut, and C. Huang, “Hybrid control scheme for projective lag synchronization of Riemann-Liouville sense fractional order memristive BAM neural networks with mixed delays,” Mathematics, 2019, doi: 10.3390/math7080759. Search in Google Scholar

G. Rajchakit, P. Chanthorn, P. Kaewmesri, R. Sriraman, and C. P. Lim, “Global mittag-leffler stability and stabilization analysis of fractional-order quaternion-valued memristive neural networks,” Mathematics, 2020, doi: 10.3390/math8030422. Search in Google Scholar

P. Niamsup, M. Rajchakit, and G. Rajchakit, “Guaranteed cost control for switched recurrent neural networks with interval time-varying delay,” J. Inequalities Appl., 2013, doi: 10.1186/1029-242X-2013-292. Search in Google Scholar

H. Zhang, W. Xiong, R. Zhang, and H. Su, “Prediction of gas consumption based on LSTM-BPNN hybrid model,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 4, pp. 10665–10680, Dec. 2022, doi: 10.1080/15567036.2022.2157520. Search in Google Scholar

A. Radonjić, D. Pjevčević, and V. Maraš, “Neural Network Ensemble Approach to Pushed Convoys Dispatching Problems,” Polish Marit. Res., vol. 27, no. 1, 2020, doi: 10.2478/pomr-2020-0008. Search in Google Scholar

L. Pan, “Exploration and Mining Learning Robot of Autonomous Marine Resources Based on Adaptive Neural Network Controller,” Polish Marit. Res., 2018, doi: 10.2478/pomr-2018-0115. Search in Google Scholar

L. Qiang, Y. Bing-Dong, and H. Bi-Guang, “Calculation and Measurement of Tide Height for the Navigation of Ship at High Tide Using Artificial Neural Network,” Polish Marit. Res., 2018, doi: 10.2478/pomr-2018-0118. Search in Google Scholar

E. Bal Beşikçi, O. Arslan, O. Turan, and A. I. Ölçer, “An artificial neural network based decision support system for energy efficient ship operations,” Comput. Oper. Res., vol. 66, pp. 393–401, Feb. 2016, doi: 10.1016/j.cor.2015.04.004. Search in Google Scholar

K. Wang, X. Yan, Y. Yuan, and F. Li, “Real-time optimization of ship energy efficiency based on the prediction technology of working condition,” Transp. Res. Part D Transp. Environ., vol. 46, pp. 81–93, Jul. 2016, doi: 10.1016/j.trd.2016.03.014. Search in Google Scholar

O. Arslan, E. Besikci, and A. Olcer, “Improving energy efficiency of ships through optimisation of ship operations,” No. FY2014-3 IAMU, 2014. Search in Google Scholar

K. Rudzki, “Two-objective optimization of engine ship propulsion settings with controllable pitch propeller using artificial neural networks,” Gdynia Maritime University, 2014. Search in Google Scholar

Z. Said et al., “Application of novel framework based on ensemble boosted regression trees and Gaussian process regression in modelling thermal performance of small-scale Organic Rankine Cycle (ORC) using hybrid nanofluid,” J. Clean. Prod., vol. 360, p. 132194, Aug. 2022, doi: 10.1016/j.jclepro.2022.132194. Search in Google Scholar

G. Li, H. Zhang, B. Kawan, H. Wang, O. L. Osen, and A. Styve, “Analysis and modeling of sensor data for ship motion prediction,” 2016. doi: 10.1109/OCEANSAP.2016.7485648. Search in Google Scholar

L. P. Perera and B. Mo, “Marine Engine Operating Regions under Principal Component Analysis to evaluate Ship Performance and Navigation Behavior,” IFACPapersOnLine, 2016, doi: 10.1016/j.ifacol.2016.10.487. Search in Google Scholar

L. P. Perera and B. Mo, “Data compression of ship performance and navigation information under deep learning,” 2016. doi: 10.1115/OMAE2016-54093. Search in Google Scholar

M. Q. Yuquan D, “Models for ship fuel efficiency with applications to in-service ship fuel consumption management,” National University of Singapore, 2016. Search in Google Scholar

W. Y. Du Y, Meng Q, “Artificial neural network models for ship fuel efficiency with applications to in-service ship fuel consumption management,” 2016. Search in Google Scholar

Y. Zhu, Y. Zuo, and T. Li, “Predicting Ship Fuel Consumption based on LSTM Neural Network,” in 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), Nov. 2020, pp. 310–313. doi: 10.1109/ICCSS52145.2020.9336914. Search in Google Scholar

M. Chaal, “Ship operational performance modelling for voyage optimization through fuel consumption minimization,” 2018. Search in Google Scholar

K. Rudzki, P. Gomulka, and A. T. Hoang, “Optimization Model to Manage Ship Fuel Consumption and Navigation Time,” Polish Marit. Res., vol. 29, no. 3, pp. 141–153, Sep. 2022, doi: 10.2478/pomr-2022-0034. Search in Google Scholar

P. R. Couser, A. P. Mason, G. Mason, C. R. Smith, and B. R. Von Konsky, “Artificial Neural Networks for Hull Resistance Prediction,” 2004. Search in Google Scholar

K. Grabowska and P. Szczuko, “Ship resistance prediction with Artificial Neural Networks,” in 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2015, pp. 168–173. Search in Google Scholar

C. M. Bishop, Neural networks for pattern recognition. Oxford university press, 1995. Search in Google Scholar

A. P. Mason, P. R. Couser, G. Mason, C. R. Smith, and B. R. Von Konsky, “Optimisation of Vessel Resistance using Genetic Algorithms and Artificial Neural Networks,” Compit 05, 2005. Search in Google Scholar

J. Holtrop and G. G. J. Mennen, “APPROXIMATE POWER PREDICTION METHOD.,” 1982. doi: 10.3233/isp-1982-2933501. Search in Google Scholar

L. T. Le, G. Lee, K.-S. Park, and H. Kim, “Neural network-based fuel consumption estimation for container ships in Korea,” Marit. Policy Manag., vol. 47, no. 5, pp. 615–632, Jul. 2020, doi: 10.1080/03088839.2020.1729437. Search in Google Scholar

I. Ortigosa, R. Lopez, and J. Garcia, “A neural networks approach to residuary resistance of sailing yachts prediction,” in Proceedings of the international conference on marine engineering MARINE, 2007, vol. 2007, p. 250. Search in Google Scholar

I. Ortigosa, R. López, and J. García, “Prediction of total resistance coefficients using neural networks,” J. Marit. Res., vol. 6, no. 3, pp. 15–26, 2009. Search in Google Scholar

G. Zhang, V. V. Thai, K. F. Yuen, H. S. Loh, and Q. Zhou, “Addressing the epistemic uncertainty in maritime accidents modelling using Bayesian network with interval probabilities,” Saf. Sci., vol. 102, pp. 211–225, Feb. 2018, doi: 10.1016/j.ssci.2017.10.016. Search in Google Scholar

Q. Zhou, Y. D. Wong, H. S. Loh, and K. F. Yuen, “A fuzzy and Bayesian network CREAM model for human reliability analysis – The case of tanker shipping,” Saf. Sci., vol. 105, pp. 149–157, Jun. 2018, doi: 10.1016/j.ssci.2018.02.011. Search in Google Scholar

Q. Zhou, Y. D. Wong, H. S. Loh, and K. F. Yuen, “ANFIS model for assessing near-miss risk during tanker shipping voyages,” Marit. Policy Manag., vol. 46, no. 4, pp. 377–393, May 2019, doi: 10.1080/03088839.2019.1569765. Search in Google Scholar

J. Tran et al., “Systematic review and content analysis of Australian health care substitute decision making online resources,” Aust. Heal. Rev., vol. 45, no. 3, pp. 317–327, Jan. 2021, doi: 10.1071/AH20070. Search in Google Scholar

C. Sun, H. Wang, C. Liu, and Y. Zhao, “Dynamic Prediction and Optimization of Energy Efficiency Operational Index (EEOI) for an Operating Ship in Varying Environments,” J. Mar. Sci. Eng., vol. 7, no. 11, p. 402, Nov. 2019, doi: 10.3390/jmse7110402. Search in Google Scholar

Y.-R. Kim, M. Jung, and J.-B. Park, “Development of a Fuel Consumption Prediction Model Based on Machine Learning Using Ship In-Service Data,” J. Mar. Sci. Eng., vol. 9, no. 2, p. 137, Jan. 2021, doi: 10.3390/jmse9020137. Search in Google Scholar

L. Moreira, R. Vettor, and C. Guedes Soares, “Neural Network Approach for Predicting Ship Speed and Fuel Consumption,” J. Mar. Sci. Eng., vol. 9, no. 2, p. 119, Jan. 2021, doi: 10.3390/jmse9020119. Search in Google Scholar

P. Karagiannidis, N. Themelis, G. Zaraphonitis, C. Spandonidis, and C. Giordamlis, “Ship fuel consumption prediction using artificial neural networks,” in Proceedings of the Annual meeting of marine technology conference proceedings, Athens, Greece, 2019, pp. 46–51. Search in Google Scholar

Z. Hu, Y. Jin, Q. Hu, S. Sen, T. Zhou, and M. T. Osman, “Prediction of Fuel Consumption for Enroute Ship Based on Machine Learning,” IEEE Access, vol. 7, pp. 119497–119505, 2019, doi: 10.1109/ACCESS.2019.2933630. Search in Google Scholar

R. Ye and J. Xu, “Vessel fuel consumption model based on neural network,” Sh. Eng., vol. 38, no. 3, pp. 85–88, 2016. Search in Google Scholar

Z. Wang and S. Chen, “Real-time Forecast of Fuel Consumption of Ship Main Engine Based on LSTM Neural Network [J],” J. Wuhan Univ. Technol. (Transportation Sci. Eng., vol. 44, no. 05, pp. 923–927, 2020. Search in Google Scholar

L. Bui-Duy and N. Vu-Thi-Minh, “Utilization of a deep learning-based fuel consumption model in choosing a liner shipping route for container ships in Asia,” Asian J. Shipp. Logist., vol. 37, no. 1, pp. 1–11, Mar. 2021, doi: 10.1016/j.ajsl.2020.04.003. Search in Google Scholar

X. Q. Shen, S. Z. Wang, T. Xu, C. J. Shi, and B. X. Ji, “Ship Fuel Consumption Prediction under Various Weather Condition Based on DBN,” in Safety of Sea Transportation, CRC Press, 2017, pp. 69–74. doi: 10.1201/9781315099088-11. Search in Google Scholar

S. Wang, B. Ji, J. Zhao, W. Liu, and T. Xu, “Predicting ship fuel consumption based on LASSO regression,” Transp. Res. Part D Transp. Environ., vol. 65, pp. 817–824, Dec. 2018, doi: 10.1016/j.trd.2017.09.014. Search in Google Scholar

V. D. Bui and H. P. Nguyen, “A Comprehensive Review on Big Data-Based Potential Applications in Marine Shipping Management,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 3, pp. 1067–1077, Jun. 2021, doi: 10.18517/ijaseit.11.3.15350. Search in Google Scholar

Z. H. Munim, M. Dushenko, V. J. Jimenez, M. H. Shakil, and M. Imset, “Big data and artificial intelligence in the maritime industry: a bibliometric review and future research directions,” Marit. Policy Manag., vol. 47, no. 5, pp. 577–597, Jul. 2020, doi: 10.1080/03088839.2020.1788731. Search in Google Scholar

H. P. Nguyen, P. Q. P. Nguyen, and V. D. Bui, “Applications of Big Data Analytics in Traffic Management in Intelligent Transportation Systems,” JOIV Int. J. Informatics Vis., vol. 6, no. 1–2, pp. 177–187, May 2022, doi: 10.30630/joiv.6.1-2.882. Search in Google Scholar

A. Fan, Z. Wang, L. Yang, J. Wang, and N. Vladimir, “Multistage decision-making method for ship speed optimisation considering inland navigational environment,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 235, no. 2, pp. 372–382, May 2021, doi: 10.1177/1475090220982414. Search in Google Scholar

A. V. Goodchild and C. F. Daganzo, “Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations,” Transp. Sci., vol. 40, no. 4, pp. 473–483, Nov. 2006, doi: 10.1287/trsc.1060.0148. Search in Google Scholar

R. Adland, P. Cariou, H. Jia, and F.-C. Wolff, “The energy efficiency effects of periodic ship hull cleaning,” J. Clean. Prod., vol. 178, pp. 1–13, Mar. 2018, doi: 10.1016/j.jclepro.2017.12.247. Search in Google Scholar

A. Farkas, N. Degiuli, I. Martić, and M. Vujanović, “Greenhouse gas emissions reduction potential by using antifouling coatings in a maritime transport industry,” J. Clean. Prod., vol. 295, p. 126428, May 2021, doi: 10.1016/j.jclepro.2021.126428. Search in Google Scholar

Y. Zhu, Y. Zuo, and T. Li, “Modeling of Ship Fuel Consumption Based on Multisource and Heterogeneous Data: Case Study of Passenger Ship,” J. Mar. Sci. Eng., vol. 9, no. 3, p. 273, Mar. 2021, doi: 10.3390/jmse9030273. Search in Google Scholar

Y. Man, T. Sturm, M. Lundh, and S. N. MacKinnon, “From Ethnographic Research to Big Data Analytics—A Case of Maritime Energy-Efficiency Optimization,” Appl. Sci., vol. 10, no. 6, p. 2134, Mar. 2020, doi: 10.3390/app10062134. Search in Google Scholar

Ø. J. Rødseth, L. P. Perera, and B. Mo, “Big data in shipping-Challenges and opportunities,” 2016. Search in Google Scholar

J. L. and Y. N. M. Jeon, “A study on big data technology and collection, processing and analysis method for ship,” in The Korean Society of Mechanical Engineers Annual Conference, Korea, pp. 3083–3085. Search in Google Scholar

T. Varelas and S. Plitsos, “Real-Time Ship Management through the Lens of Big Data,” in 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService), 2020, pp. 142–147. Search in Google Scholar

T. Anan, H. Higuchi, and N. Hamada, “New artificial intelligence technology improving fuel efficiency and reducing CO2 emissions of ships through use of operational big data,” Fujitsu Sci. Tech. J, vol. 53, no. 6, pp. 23–28, 2017. Search in Google Scholar

B. Mishachandar and S. Vairamuthu, “Diverse ocean noise classification using deep learning,” Appl. Acoust., vol. 181, p. 108141, Oct. 2021, doi: 10.1016/j.apacoust.2021.108141. Search in Google Scholar

H. P. Nguyen, P. Q. P. Nguyen, D. K. P. Nguyen, V. D. Bui, and D. T. Nguyen, “Application of IoT Technologies in Seaport Management,” JOIV Int. J. Informatics Vis., vol. 7, no. 1, p. 228, Mar. 2023, doi: 10.30630/joiv.7.1.1697. Search in Google Scholar

J. Chen, “IOT Monitoring System for Ship Operation Management Based on YOLOv3 Algorithm,” J. Control Sci. Eng., vol. 2022, pp. 1–7, Jun. 2022, doi: 10.1155/2022/2408550. Search in Google Scholar

C. Wang, J. Shen, P. Vijayakumar, and B. B. Gupta, “Attribute-Based Secure Data Aggregation for Isolated IoT-Enabled Maritime Transportation Systems,” IEEE Trans. Intell. Transp. Syst., pp. 1–10, 2021, doi: 10.1109/TITS.2021.3127436. Search in Google Scholar

L. P. Perera and B. Mo, “Machine intelligence based data handling framework for ship energy efficiency,” IEEE Trans. Veh. Technol., 2017, doi: 10.1109/TVT.2017.2701501. Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences