Otwarty dostęp

Experimental Study on Vibration of a Rotating Pipe in Still Water and in Flow


Zacytuj

M. J. Moharrami, C. de Arruda Martins, and H. Shiri, “Nonlinear integrated dynamic analysis of drill strings under stick-slip vibration,” Applied Ocean Research, vol. 108, p. 102521, 2021. doi: https://doi.org/10.1016/j.apor.2020.102521. Search in Google Scholar

R. Wang, X. Liu, G. Song, and S. Zhou, “Non-Linear Dynamic Analysis of Drill String System with Fluid-Structure Interaction,” Applied Sciences, vol. 11, p. 9047, 2021. doi: https://doi.org/10.3390/app11199047. Search in Google Scholar

M. Stosiak, M. Zawiślak, and B. Nishta, “Studies of resistances of natural liquid flow in helical and curved pipes,” in Proceedings of the 14th International Scientific Conference: Computer Aided Engineering, pp. 759-766, 2019. dio: https://doi.org/10.2478/pomr-2018-0103. Search in Google Scholar

A. Ghasemloonia, D. G. Rideout, and S. D. Butt, “A review of drillstring vibration modeling and suppression methods,” Journal of Petroleum Science and Engineering, vol. 131, pp. 150-164, 2015. doi: https://doi.org/10.1016/j.petrol.2015.04.030. Search in Google Scholar

F. Liang, X.-D. Yang, W. Zhang, and Y.-J. Qian, “Vibrations in 3D space of a spinning supported pipe exposed to internal and external annular flows,” Journal of Fluids and Structures, vol. 87, pp. 247-262, 2019. doi: https://doi.org/10.1016/j.jfluidstructs.2019.04.002. Search in Google Scholar

F. Wang and N. Chen, “Dynamic response analysis of drill pipe considering horizontal movement of platform during installation of subsea production tree,” Polish Maritime Research, 2020. doi: https://doi.org/10.2478/pomr-2020-0043. Search in Google Scholar

G. Gao, Y. Cui, and X. Qiu, “Prediction of vortex-induced vibration response of deep sea top-tensioned riser in sheared flow considering parametric excitations,” Polish Maritime Research, 2020. doi: https://doi.org/10.2478/pomr-2020-0026. Search in Google Scholar

P. Catalano, M. Wang, G. Iaccarino, and P. Moin, “Numerical simulation of the flow around a circular cylinder at high Reynolds numbers,” International Journal of Heat and Fluid Flow, vol. 24, pp. 463-469, 2003. doi:https://doi.org/10.1016/S0142-727X(03)00061-4. Search in Google Scholar

D. Stojković, M. Breuer, and F. Durst, “Effect of high rotation rates on the laminar flow around a circular cylinder,” Physics of Fluids, vol. 14, pp. 3160-3178, 2002. doi: https://doi.org/10.1063/1.1492811. Search in Google Scholar

M. H. Chou, “Numerical study of vortex shedding from a rotating cylinder immersed in a uniform flow field,” International Journal for Numerical Methods in Fluids, vol. 32, pp. 545-567, 2000. doi:https://doi.org/10.1002/(SICI)1097-0363(20000315)32:5<545::AIDFLD948>3.0.CO;2-2. Search in Google Scholar

R. K. Ray and J. C. Kalita, “Higher-order-compact simulation of unsteady flow past a rotating cylinder at moderate Reynolds numbers,” Computational and Applied Mathematics, vol. 35, pp. 219-250, 2016. doi: https://doi.org/10.1007/s40314-014-0191-2. Search in Google Scholar

M. J. Ezadi Yazdi, A. S. Rad, and A. B. Khoshnevis, “Features of the flow over a rotating circular cylinder at different spin ratios and Reynolds numbers: Experimental and numerical study,” The European Physical Journal Plus, vol. 134, pp. 1-21, 2019. doi: https://doi.org/10.1140/epjp/i2019-12508-3. Search in Google Scholar

Y. Chew, M. Cheng, and S. Luo, “A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme,” Journal of Fluid Mechanics, vol. 299, pp. 35-71, 1995. doi: https://doi.org/10.1017/S0022112095003417. Search in Google Scholar

D. Stojković, P. Schön, M. Breuer, and F. Durst, “On the new vortex shedding mode past a rotating circular cylinder,” Physics of Fluids, vol. 15, pp. 1257-1260, 2003. doi: https://doi.org/10.1063/1.1562940. Search in Google Scholar

J. O. Pralits, L. Brandt, and F. Giannetti, “Instability and sensitivity of the flow around a rotating circular cylinder,” Journal of Fluid Mechanics, vol. 650, pp. 513-536, 2010. doi: https://doi.org/10.1017/S0022112009993764. Search in Google Scholar

J. O. Pralits, F. Giannetti, and L. Brandt, “Three-dimensional instability of the flow around a rotating circular cylinder,” Journal of Fluid Mechanics, vol. 730, pp. 5-18, 2013. doi: https://doi.org/10.1017/jfm.2013.334. Search in Google Scholar

J. Meena and S. Mittal, “Three-dimensional flow past a rotating cylinder,” Journal of Fluid Mechanics, vol. 766, pp. 28-53, 2015. doi: https://doi.org/10.1017/jfm.2015.6. Search in Google Scholar

L. Ding, H. Kong, Q. Zou, J. Wang, and L. Zhang, “2-DOF vortex-induced vibration of rotating circular cylinder in shear flow,” Ocean Engineering, vol. 249, p. 111003, 2022. doi: https://doi.org/10.1016/j.oceaneng.2022.111003. Search in Google Scholar

Q. Zou, L. Ding, H. Wang, J. Wang, and L. Zhang, “Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder,” Ocean Engineering, vol. 191, p. 106505, 2019. doi: https://doi.org/10.1016/j.oceaneng.2019.106505. Search in Google Scholar

Q. Zou, L. Ding, R. Zou, H. Kong, H. Wang, and L. Zhang, “Two-degree-of-freedom flow-induced vibration of two circular cylinders with constraint for different arrangements,” Ocean Engineering, vol. 225, p. 108806, 2021. doi: https://doi.org/10.1016/j.oceaneng.2021.108806. Search in Google Scholar

A. Munir, M. Zhao, H. Wu, L. Lu, and D. Ning, “Three-dimensional numerical investigation of vortex-induced vibration of a rotating circular cylinder in uniform flow,” Physics of Fluids, vol. 30, p. 053602, 2018. doi: https://doi.org/10.1063/1.5025238. Search in Google Scholar

A. Munir, M. Zhao, H. Wu, and L. Lu, “Numerical investigation of wake flow regimes behind a high-speed rotating circular cylinder in steady flow,” Journal of Fluid Mechanics, vol. 878, pp. 875-906, 2019. doi: https://doi.org/10.1017/jfm.2019.677. Search in Google Scholar

T. Tang, H. Zhu, J. Song, B. Ma, and T. Zhou, “The state-ofthe-art review on the wake alteration of a rotating cylinder and the associated interaction with flow-induced vibration,” Ocean Engineering, vol. 254, p. 111340, 2022. doi: https://doi.org/10.1016/j.oceaneng.2022.111340. Search in Google Scholar

J. Zhao, D. L. Jacono, J. Sheridan, K. Hourigan, and M. C. Thompson, “Experimental investigation of in-line flow-induced vibration of a rotating circular cylinder,” Journal of Fluid Mechanics, vol. 847, pp. 664-699, 2018. doi: https://doi.org/10.1017/jfm.2018.357. Search in Google Scholar

K. W. L. Wong, J. Zhao, D. L. Jacono, M. C. Thompson, and J. Sheridan, “Experimental investigation of flow-induced vibration of a sinusoidally rotating circular cylinder,” Journal of Fluid Mechanics, vol. 848, pp. 430-466, 2018. doi: https://doi.org/10.1017/jfm.2018.379. Search in Google Scholar

R. Bourguet, “Flow-induced vibrations of a rotating cylinder in an arbitrary direction,” Journal of Fluid Mechanics, vol. 860, pp. 739-766, 2019. doi: https://doi.org/10.1017/jfm.2018.896. Search in Google Scholar

R. Bourguet, “Two-degree-of-freedom flow-induced vibrations of a rotating cylinder,” Journal of Fluid Mechanics, vol. 897, 2020. doi: https://doi.org/10.1017/jfm.2020.403. Search in Google Scholar

R. Bourguet and D. L. Jacono, “Flow-induced vibrations of a rotating cylinder,” Journal of Fluid Mechanics, vol. 740, pp. 342-380, 2014. doi: https://doi.org/10.1017/jfm.2013.665. Search in Google Scholar

K. H. Aronsen, “An experimental investigation of in-line and combined in-line and cross-flow vortex induced vibrations,” 2007. doi:10.1115/1.4038350. Open DOISearch in Google Scholar

W. Chen, C.-k. Rheem, X. Li, and Y. Lin, “Investigation of the motion characteristics for a spring-mounted rotating cylinder in flow,” Journal of Marine Science and Technology, vol. 25, pp. 1228-1245, 2020. doi: https://doi.org/10.1007/s00773-020-00711-y. Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences