Otwarty dostęp

Simulation of Turning Manoeuvre of Planing Craft Taking Into Account the Running Attitude Change in a Simplified Manner


Zacytuj

1. H. Yasukawa and Y. Yoshimura, “Introduction of MMG standard method for ship manoeuvering predictions”, Journal of Marine Science and Technology, Vol. 20, pp. 37–52, 2015, (DOI: https://doi.org/10.1007/s00773-014-0293-y).10.1007/s00773-014-0293-y Search in Google Scholar

2. ITTC manoeuvring group members, “Testing and extrapolation methods, manoeuvrability captive model test procedures”, ITTC–Recommended. 7.5-02-06–02, Revision 02, 2008. Search in Google Scholar

3. S. Sutulo and G. Soares, “On the application of empiric methods for prediction of ship manoeuvring properties and associated uncertainties”, Journal of Ocean Engineering, Vol. 186, 2019, (DOI: https://doi.org/10.1016/j.oceaneng.2019.106111).10.1016/j.oceaneng.2019.106111 Search in Google Scholar

4. H. Yasukawa, “Manoeuvering hydrodynamic derivatives and course stability of a ship close to a bank”, Journal of Ocean Engineering, Vol. 188, 2019, (DOI: https://doi.org/10.1016/j.oceaneng.2019.106149).10.1016/j.oceaneng.2019.106149 Search in Google Scholar

5. G. Taimuri, J. Matusiak, T. Mikkola, P. Kujala and S. Hidaris, “A 6-DoF manoeuvring model for the rapid estimation of hydrodynamic actions in deep and shallow waters”, Journal of Ocean Engineering, Vol. 218, 2020, (DOI: https://doi.org/10.1016/j.oceaneng.2020.108103).10.1016/j.oceaneng.2020.108103 Search in Google Scholar

6. S. Ni, Z. Liu, Y. Cai and T. Zhang, “A practical approach to numerically predicting a manoeuvring vessel in waves oriented to maritime simulator”, Journal of Mathematical Problems in Engineering, Article ID 8361951, 2020, (DOI:10.1155/2020/8361951).10.1155/2020/8361951 Search in Google Scholar

7. L. Yiew, Y. Jin and A. Magee, “A practical approach to numerically predicting a manoeuvring vessel in waves oriented to maritime simulator”, Journal of Physics: Conf. Series, 1357, 2019, (DOI: https://doi.org/10.1155/2020/8361951).10.1088/1742-6596/1357/1/012007 Search in Google Scholar

8. R. Kołodziej and P. Hoffmann, “Numerical Estimation of Hull Hydrodynamic Derivatives in Ship Manoeuvring Prediction”, Polish Maritime Research, Vol. 28, pp. 46-53, 2021.10.2478/pomr-2021-0020 Search in Google Scholar

9. C.J. Henry, “Calm water equilibrium, directional stability and steady turning conditions for recreational planing crafts”, Davidson Laboratory, Stevens Institute of Technology report No. CG-D-8-76, 1976. Search in Google Scholar

10. M. Plante, S.L. Toxopeus, J. Blok and J.A. Keuning, “Hydrodynamic manoeuvring aspects of planing craft”, International Symposium and Workshop on Forces Acting on a manoeuvring Vessel, Val de Reuil, France, 1998. Search in Google Scholar

11. S.L. Toxopeus, J.A. Keuning and J.P. Hooft, “Dynamic stability of Planing Ships, International Symposium and Seminar on the Safety of High Speed Craft”, RINA, London, 1997. Search in Google Scholar

12. Y. Ikeda, T. Katayama and H. Okumura, “Characteristics of hydrodynamic derivatives in manoeuvring equations for super high-speed planing hulls”, Proceedings of the 10th International Offshore and Polar Engineering Conference, 2000. Search in Google Scholar

13. T. Katayama, R. Kimoto and Y. Ikeda, “Effects of running attitudes on manoeuvring hydrodynamic forces for planing hulls”, 5th International Conference on Fast Sea Transportation, FAST, St. Petersburg, Russia, 2005. Search in Google Scholar

14. T. Katayama, T. Iida and Y. Ikeda, “Effects of change in running attitude on turning diameter of planing craft”, Proceedings of 2nd PAAMES and AMEC, Jeju Island, Korea, 2006. Search in Google Scholar

15. T. Katayama, T. Taniguchi, H. Fuji and Y. Ikeda, “Development of manoeuvring simulation method for high speed craft using hydrodynamic forces obtained from model test”, 10th International Conference on Fast Sea Transportation, FAST, Athens, Greece, 2009. Search in Google Scholar

16. H. Yasukawa, N. Hirata and Y. Nakayama, “High-Speed Ship Manoeuvrability”, Journal of Ship Research, Vol. 60 (4), pp. 239-258, 2016, (DOI: https://doi.org/10.5957/JOSR.60.4.160032).10.5957/JOSR.60.4.160032 Search in Google Scholar

17. A. Ircani, M. Martelli, M. Viviani, M. Altosole, C. Podenzana-Bonvino and D. Grassi, “A simulation approach for planing boats propulsion and manoeuvrability”, Transaction RINA, International Journal of Small Craft Technology, Vol.158 (Part B1), 2016, (DOI: 10.3940/rina.ijsct.2016.b1.180). Open DOISearch in Google Scholar

18. S. Hajizadeh, M.S. Seif and H. Mehdigholi, “Evaluation of planing craft manoeuvrability using mathematical modelling under the action of the rudder”, Journal of Scientia Iranica, Vol. 24 (1), pp. 293-301, 2017, (DOI: 10.24200/SCI.2017.4033). Open DOISearch in Google Scholar

19. E.M. Lewandowski, “The Dynamics of Marine Craft: Manoeuvring and Seakeeping”, Advanced Series on Ocean Engineering, 22, World Scientific Publishing Co. Pte. Ltd., Singapore, 2004.10.1142/4815 Search in Google Scholar

20. S. Tavakoli and A. Dashtimanesh, “A six-DOF theoretical model for steady turning manoeuver of a planing hull”, Journal of Ocean Engineering, Vol. 189, 2019, (DOI: https://doi.org/10.1016/j.oceaneng.2019.106328).10.1016/j.oceaneng.2019.106328 Search in Google Scholar

21. S. Tavakoli and A. Dashtimanesh, “Mathematical simulation of planar motion mechanism test for planing hulls by using 2D+T theory”, Journal of Ocean Engineering, Vol. 169, pp. 651-672, 2018, (DOI: https://doi.org/10.1016/j.oceaneng.2018.09.045).10.1016/j.oceaneng.2018.09.045 Search in Google Scholar

22. R. Algarin and A. Bula, “A numeric study of the manoeuvrability of planing hulls with six degrees of freedom”, Journal of Ocean Engineering, Vol. 221, pp. 1-16, 2021, (https://doi.org/10.1016/j.oceaneng.2020.108514).10.1016/j.oceaneng.2020.108514 Search in Google Scholar

23. E.V. Lewis, “Volume III of principles of naval architecture, motion in waves and controllability”, The Society of Naval Architects and Marine Engineering, revision 02, 1989. Search in Google Scholar

24. K. Sadati, H. Zeraatgar and A. Moghaddas, “Investigation of planing craft manoeuvrability using full-scale tests”, Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment, 2022, (DOI: doi/abs/10.1177/14750902211030386).10.1177/14750902211030386 Search in Google Scholar

25. D. Savitsky, “Hydrodynamic design of planing hulls”, Journal of Marine Technology, Vol. 32 (3), pp 78-88, 1964. Search in Google Scholar

26. Topsystemdrive.com. Search in Google Scholar

27. G. Fridsma, “A systematic study of the rough-water performance of planing boats”, Davidson Laboratory, Stevens Institute of Technology report No. 1275, 1969.10.21236/AD0708694 Search in Google Scholar

28. K. Sadati, H. Zeraatgar and S. Babuei, “Roll hydrodynamic coefficients of planing craft’s manoeuver using 2D+t approach”, Journal of Scientia Iranica, Vol. 29, Issue 3, pp. 1197-1209, 2022, (DOI: 10.24200/sci.2021.57379.5208). Open DOISearch in Google Scholar

29. H. Zeraatgar, A. Moghaddas and K. Sadati, “Analysis of surge added mass of planing hulls by model experiment”, Journal of Ships and Offshore Structures, Vol. 15 (3), pp. 310-317, 2019, (DOI: https://doi.org/10.1080/17445302.2019.1615705).10.1080/17445302.2019.1615705 Search in Google Scholar

30. O. Tascon, A. Troesh and K. Maki, “Numerical computation of the hydrodynamic forces acting on a manoeuvering planing hull via slender body theory-SBT and 2-D impact theory”, 10th International Conference on Fast Sea Transportation, FAST, Athens, Greece, 2009. Search in Google Scholar

31. M. Morabito, “Prediction of planing hull side forces in yaw using slender body oblique impact theory”, Journal of Ocean Engineering, Vol. 101, pp. 47-57, 2015, (https://doi.org/10.1016/j.oceaneng.2015.04.014).10.1016/j.oceaneng.2015.04.014 Search in Google Scholar

32. R. Algarin and O. Tascon, “Hydrodynamic modelling of planing boats with asymmetry and steady condition”, IX HSMV, Naples, 2011. Search in Google Scholar

33. Y. Toyama, “Two dimensional water impact of unsymmetrical bodies”, Journal of the Society of Naval Architects of Japan, Vol. 173, pp. 285-291, 1993, (DOI: https://doi.org/10.2534/jjasnaoe1968.1993.285).10.2534/jjasnaoe1968.1993.285 Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences