Otwarty dostęp

Effects of Rudder and Blade Pitch on Hydrodynamic Performance of Marine Propeller Using CFD


Zacytuj

1. Y. Zhang, X. P. Wu, M. Y. Lai, G. P. Zhou, and J. Zhang, “Feasibility Study of Rans in Predicting Propeller Cavitation in Behind-Hull Conditions”, Polish Marit. Res., vol. 27, no. 4, 2020, DOI: 10.2478/pomr-2020-0063. Open DOISearch in Google Scholar

2. M. Burak Samsul, “Blade Cup Method for Cavitation Reduction in Marine Propellers”, Polish Marit. Res., vol. 28, no. 2, 2021, DOI: 10.2478/pomr-2021-0021. Open DOISearch in Google Scholar

3. S. A. Kinnas, Y. Tian, A. Sharma, “Numerical Modeling of a Marine Propeller Undergoing Surge and Heave Motion”, International Journal of Rotating Machinery, pp. 1-8, 2012, doi.org/10.1155/2012/25746110.1155/2012/257461 Search in Google Scholar

4. A. Nadery and H. Ghassemi, “Numerical Investigation of the Hydrodynamic Performance of the Propeller behind the Ship with and without Wed”, Polish Marit. Res., vol. 27, no. 4, 2020, DOI: 10.2478/pomr-2020-0065. Open DOISearch in Google Scholar

5. Y. Zhang, X. P. Wu, M. Y. Lai, G. P. Zhou, and J. Zhang, “Feasibility Study of RANS in Predicting Propeller Cavitation in Behind-Hull Conditions”, Polish Marit. Res., vol. 27, no. 4, 2020, DOI: 10.2478/pomr-2020-0063. Open DOISearch in Google Scholar

6. H. Nouroozi and H. Zeraatgar, “Propeller Hydrodynamic Characteristics in Oblique Flow by Unsteady Ranse Solver”, Polish Marit. Res., vol. 27, no. 1, 2020, DOI: 10.2478/pomr-2020-0001. Open DOISearch in Google Scholar

7. B. Lou and H. Cui, “Fluid-structure interaction vibration experiments and numerical verification of a real marine propeller”, Polish Marit. Res., vol. 28, no. 3, 2021, DOI: 10.2478/pomr-2021-0034. Open DOISearch in Google Scholar

8. L. Guangnian, Q. Chen, and Y. Liu, “Experimental Study on Dynamic Structure of Propeller Tip Vortex”, Polish Marit. Res., vol. 27, no. 2, 2020, DOI: 10.2478/pomr-2020-0022. Open DOISearch in Google Scholar

9. S. E. Belhenniche, M. Aounallah, O. Imine, F. Celik, “Effect of geometry configurations on hydrodynamic performance assessment of a marine propeller”, Journal of Shipbuilding, vol. 67, no. 4, pp. 31-48, 2017. doi:10.21278/brod67403 Open DOISearch in Google Scholar

10. G. Kuiper, “New developments and propeller design”, Journal of Hydrodynamics, vol.7, no. 22, pp. 7-16, 2010. doi:10.1016/S1001-6058(09)60161-X Open DOISearch in Google Scholar

11. A. Farkas, N. Degiuli, I. Martić. “Assessment of the effect of biofilm on the ship hydrodynamic performance by performance prediction method”, Int. J. Naval Architecture and Ocean Engineering, vol. 13, pp. 102-114, 2021. https://doi.org/10.1016/j.ijnaoe.2020.12.005. Search in Google Scholar

12. S. Gaggero, “Design of PBCF energy saving devices using optimization strategies: A step towards a complete viscous design approach”, Ocean Engineering, vol. 159, pp. 517-538, 2018. doi://doi.org/10.1016/j.oceaneng.2018.01.003. Open DOISearch in Google Scholar

13. V. H. Ngo, T. T. Le, Q. Le, Y. Ikeda, “A study on interaction effects on hydrodynamic performance of a system rudder-propeller by distant gap”, Proceedings of the 12th International Marine Design Conference, Tokyo, Japan, pp. 179-193, 2015. Search in Google Scholar

14. V. H. Ngo, T. T. Le, Y. Ikeda, “A study on improving hydrodynamic performances of a system rudder and propeller by attaching a fix plate on the rudder”, The 8th Asia-Pacific Workshop on Marine Hydrodynamics -APHydro 2016, Hanoi, Vietnam, pp. 277-284, 2016. Search in Google Scholar

15. P. B. John, A. Poul, Hydrodynamics of Ship Propellers Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511624254 Search in Google Scholar

16. H. Ira, A. Abbott, E. Von Doenhoff, Theory of Wing Sections, Dover Publications, New York, 1958. Available: https://catalog.library.vanderbilt.edu/permalink/01VAN_INST/13em2a7/alma991043239434003276 Search in Google Scholar

17. J. S. Carlton, Marine Propellers and Propulsion (Fourth Edition), Butterworth-Heinemann, 2019. https://doi.org/10.1016/C2014-0-01177-X Search in Google Scholar

18. ANSYS Fluent Theory Guide, 2013. Search in Google Scholar

19. ITTC, Proc. of the 25th International Towing Tank Conference, Fukuoka, Japan, 2008. Available: http://resolver.tudelft.nl/uuid:76a73833-cd0a-4972-9540-b56659b8cdab Search in Google Scholar

20. ITTC, Proc. of the 26th International Towing Tank Conference, Rio de Janeiro, Brazil, 2011. Available: https://ittc.info/media/3317/committees.pdf Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences