Zacytuj

1. R. Vettor and C.G. Soares, Development of a ship weather routing system. Ocean Engineering, 2016. 123: pp. 1-14, DOI: 10.1016/j.oceaneng.2016.06.03510.1016/j.oceaneng.2016.06.035 Search in Google Scholar

2. Z. Ma, H. Chen, and Y. Zhang, Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine. Archives of Thermodynamics, 2017. 38(3): pp. 63-75, DOI: 10.1515/aoter-2017-0016.10.1515/aoter-2017-0016 Search in Google Scholar

3. H. Zeraatgar and M.H. Ghaemi, The analysis of overall ship fuel consumption in acceleration manoeuvre using hull-propeller-engine interaction principles and governor features. Polish Maritime Research, 2019, Vol. 26; pp. 162-173, DOI: 10.2478/pomr-2019-0018.10.2478/pomr-2019-0018 Search in Google Scholar

4. M. Reichel, A. Minchev, and N. Larsen, Trim optimisation-theory and practice. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 2014. 8, DOI 10.12716/1001.08.03.09.10.12716/1001.08.03.09 Search in Google Scholar

5. S. Bielicki, Prediction of ship motions in irregular waves based on response amplitude operators evaluated experimentally in noise waves. Polish Maritime Research, 2021. Vol. 28; pp. 16-27, DOI: 10.2478/pomr-2021-000210.2478/pomr-2021-0002 Search in Google Scholar

6. J. Choi et al., Resistance and propulsion characteristics of various commercial ships based on CFD results. Ocean Engineering, 2010. 37(7): pp. 549-566, https://doi.org/10.1016/j.oceaneng.2010.02.007.10.1016/j.oceaneng.2010.02.007 Search in Google Scholar

7. H. Islam and C.G. Soares, Uncertainty analysis in ship resistance prediction using OpenFOAM. Ocean Engineering, 2019. 191: p. 105805. https://doi.org/10.1016/j.oceaneng.2019.02.033.10.1016/j.oceaneng.2019.02.033 Search in Google Scholar

8. Y. Zhang et al., Feasibility study of RANS in predicting propeller cavitation in behind-hull conditions. Polish Maritime Research, 2020. DOI: 10.2478/pomr-2020-0063.10.2478/pomr-2020-0063 Search in Google Scholar

9. T.N. Tu et al., Numerical Study on the Influence of Trim on Ship Resistance in Trim Optimization Process. Naval Engineers Journal, 2018. 130(4): pp. 133-142. Search in Google Scholar

10. J. Sun et al., A study on trim optimization for a container ship based on effects due to resistance. Journal of Ship Research, 2016. 60(1): pp. 30-47. https://doi.org/10.5957/jsr.2016.60.1.30.10.5957/jsr.2016.60.1.30 Search in Google Scholar

11. T.-H. Le et al., Numerical investigation on the effect of trim on ship resistance by RANSE method. Applied Ocean Research, 2021. 111: p. 102642. https://doi.org/10.1016/j.apor.2021.102642.10.1016/j.apor.2021.102642 Search in Google Scholar

12. P.M. Carrica, A.M. Castro, and F. Stern, Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. Journal of Marine Science and Technology, 2010. 15(4): pp. 316-330. https://doi.org/10.1007/s00773-010-0098-6.10.1007/s00773-010-0098-6 Search in Google Scholar

13. T.N. Tu et al., Numerical prediction of propeller-hull interaction characteristics using RANS method. Polish Maritime Research, 2019, Vol. 26; pp. 163-172, DOI: 10.2478/pomr-2019-0036.10.2478/pomr-2019-0036 Search in Google Scholar

14. Y.N. Win et al., RANS simulation of KVLCC2 using simple body-force propeller model with rudder and without rudder. 日本船舶海洋工学会論文集, 2016. 23: pp. 1-11. https://doi.org/10.2534/jjasnaoe.23.110.2534/jjasnaoe.23.1 Search in Google Scholar

15. M.K. Gokce, O.K. Kinaci, and A.D. Alkan, Self-propulsion estimations for a bulk carrier. Ships and Offshore Structures, 2019. 14(7): pp. 656-663. https://doi.org/10.1080/17445302.2018.154410810.1080/17445302.2018.1544108 Search in Google Scholar

16. Y.N. Win et al., Computation of propeller-hull interaction using simple body-force distribution model around Series 60 CB= 0.6. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2013. 18: pp. 17-27. https://doi.org/10.2534/jjasnaoe.18.1710.2534/jjasnaoe.18.17 Search in Google Scholar

17. T. Q. Chuan etal. Full-Scale Self-propulsion Computations Using Body Force Propeller Method for Series Cargo Ship 12500DWT. In International Conference on Material, Machines and Methods for Sustainable Development. 2020. Springer. https://doi.org/10.1007/978-3-030-69610-8_11310.1007/978-3-030-69610-8_113 Search in Google Scholar

18. Ship documents of cargo ship 12500DWT. Dongbac Shipbuilding Insdustry Joint Stock Company Search in Google Scholar

19. Result of sea trial „Truong Minh Ocean”_12500. Dongbac Shipbuilding Insdustry Joint Stock Company. Search in Google Scholar

20. ITTC 2014. Recommended procedures and guidelines 7.5-03-02-04. Available from: https://ittc.info/media/4198/75-03-02-04.pdf. Search in Google Scholar

21. T.N. Tu et al., Effects of Turbulence Models on RANSE Computation of Flow Around DTMB 5415 Vessel. Naval Engineers Journal, 2021. 133(3): pp. 137-151. Search in Google Scholar

22. Siemens, 2020. STAR-CCM+ User Guide. Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences