Otwarty dostęp

Performance and Emission Modelling and Simulation of Marine Diesel Engines using Publicly Available Engine Data


Zacytuj

1. Wang F., Pulsation Signals Analysis of Turbocharger Turbine Blades Based on Optimal EEMD And TEO, Polish Maritime Research 3 (103) 2019 Vol. 26; pp. 78-86 10.2478/pomr-2019-0048.10.2478/pomr-2019-0048 Search in Google Scholar

2. Ghaemi M. H., Zeraatgar H., Analysis of Hull, Propeller and Engine Interactions in Regular Waves by a Combination of Experiment and Simulation, Journal of Marine Science and Technology, 26, pages 257–272, 2021.10.1007/s00773-020-00734-5 Search in Google Scholar

3. Gu X., Jiang G., Guo Z., Ding S., Design and Experiment of Low-Pressure Gas Supply System for Dual Fuel Engine, Polish Maritime Research 2 (106) 2020 Vol. 27; pp. 76-84 10.2478/pomr-2020-0029.10.2478/pomr-2020-0029 Search in Google Scholar

4. Cepowski T., Regression Formulas for The Estimation of Engine Total Power for Tankers, Container Ships and Bulk Carriers on the Basis of Cargo Capacity and Design Speed, Polish Maritime Research, 1 (101) 2019 Vol. 26; pp. 82-94 10.2478/pomr-2019-001010.2478/pomr-2019-0010 Search in Google Scholar

5. Yang Z., Tan Q., Geng P., Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel, Polish Maritime Research, 1 (101) 2019 Vol. 26; pp. 153-161 10.2478/pomr-2019-001710.2478/pomr-2019-0017 Search in Google Scholar

6. Zeraatgar H., Ghaemi M. H., The Analysis of Overall Ship Fuel Consumption in Acceleration Manoeuvre using Hull-Propeller-Engine Interaction Principles and Governor Features, Polish Maritime Research 1 (101) 2019 Vol. 26; pp. 162-173 10.2478/pomr-2019-001810.2478/pomr-2019-0018 Search in Google Scholar

7. Gajek J., Marine Propulsion System Simulator of a CPP (Symulator Okrętowego Układu Napędowego ze Śrubą Nastawną – in Polish), Budownictwo Okrętowe, March 1975. Search in Google Scholar

8. Andersen T.E., On Dynamics of Large Ship Diesel Engine, PhD Thesis, Technical University of Denmark, 1974. Search in Google Scholar

9. Roszczyk S., et al, Static and Dynamic Characteristics of Marine Generating Sets (Statyczne i Dynamiczne Własności Okrętowych Zespołów Prądotwórczych – in Polish), Wydawnictwo Morskie, Gdansk, 1976. Search in Google Scholar

10. Tittenbrun S., Kowalski Z., Łastowski W. F., Characteristics of Rotational Speed Regulators of Ship Diesel Engines under the Light of Testing on Simulation Stands (Własności Regulatorów Prędkości Obrotowej Okrętowych Wysokoprężnych Silników Spalinowych w Świetle Badań na Stanowiskach Symulacyjnych – in Polish), Budownictwo Okrętowe, Dec. 1979. Search in Google Scholar

11. Kowalski Z., Simulation Study of Ship Propulsion Subsystems (Badanie Symulacyjne Podsystemów Napędowych Statków – in Polish), Zeszyt Naukowe Politechniki Gdańskiej (Elektryka), No. 49, Poland, 1980. Search in Google Scholar

12. Krutov V. I., Automatic Control of Internal Combustion Engines, Mir Publishers, Russia, 1987. Search in Google Scholar

13. Blanke M., Andersen J. S., On Dynamics of Large Two Stroke Diesel Engines: New Results from Identification, Proceedings of 9th IFAC World Conference, Budapest, Hungry, 1984.10.1016/S1474-6670(17)61272-2 Search in Google Scholar

14. Lam W. C., Katagi T., Hashimoto T., Simulation of Transient Behaviour of Marine Medium Speed Diesel Engine, 3rd International Conf. of MCMC, Southampton, Sept. 1994. Search in Google Scholar

15. Ferenc M., Numerical modeling of the Control Process of the Marine Diesel Engine with Consideration of Nonlinearity (Modelowanie Numeryczne Procesu Regulacji Okrętowego Silnika Wysokoprężnego z uwzględnieniem nieliniowości – in Polish), Zeszyty Naukowe Politechniki Śląskiej, No. 567, 1978. Search in Google Scholar

16. Ferenc M., Osuch W., Stokloska H., A simplified Mathematical Model of the Dynamics of a Medium Speed Diesel Engine (Uproszczony Model Matematyczny Dynamiki Średnioobrotowego Silnika Wysokoprężnego – in Polish), Silniki Splalinowe 4/89, Poland, 1989. Search in Google Scholar

17. Ferenc M., Wideł S., Fiutkowski M., Principles for Selecting the Dynamic Characteristics of the Rotary Speed Controller for a Medium-Speed Diesel Engine Driving a Generator (Zasady Doboru Charakterystyki Dynamicznej Regulatora Prędkości Obrotowej Średnioobrotowego Silnika Wysokoprężnego Napędzającego Prądnicę, Silniki Spalinowe – in Polish), No. 3’90. 1990. Search in Google Scholar

18. Smith J. R., et al., Prediction of Dynamic Response of Marine System Incorporating Induction-Motor Propulsion Drives, Proc. IEE, Vol. 127, No. 5, Sept. 1980.10.1049/ip-b.1980.0040 Search in Google Scholar

19. Taylor S. K., et al., The Predetermination of the Dynamic Response of Marine Systems Powered by Parallel Connected Gas Turbine and Diesel Generators, CIMAC 1985, paper D56, Oslo, 1985. Search in Google Scholar

20. Ford M. P., A Simplified Turbocharged Diesel Engine Model, Proceedings IMechE, Vol. 201, paper D4, 1987.10.1243/PIME_PROC_1987_201_182_02 Search in Google Scholar

21. Woodward J. B., Lattore R. G., Simulation of Diesel Engine Transient Behaviour in Marine Propulsion Analysis, Report MA-RD-940-83032, US Department of Transportation, Maritime Administration, 1983. Search in Google Scholar

22. Woodward J. B., Lattore R. G., Modelling of Diesel Engine Transient Behaviour in Marine Propulsion Analysis, SNAME Transactions, Vol. 192, 1984. Search in Google Scholar

23. Hendricks E., Chevalier A., Emerging Engine Control Technologies, Technical University of Denmark, 1985. Search in Google Scholar

24. Hendricks E., Poulsen N. K., Minimum Energy Control of a Large Diesel Engine, SAE Technical Paper Series 861191, 1986.10.4271/861191 Search in Google Scholar

25. Hendricks E., The Analysis of Mean Value Engine Models, SAE Technical Paper Series 890563, 1989.10.4271/890563 Search in Google Scholar

26. Hendricks E., Mean Value Modelling of Large Turbocharged Two-Stroke Diesel Engines, SAE Technical Paper Series 890564, 1989.10.4271/890564 Search in Google Scholar

27. Jansen J. P., et al., Mean Value Modelling of a Small Turbocharged Diesel Engine, SAE Tech-nical Paper Series 910070, 1991.10.4271/910070 Search in Google Scholar

28. Woud J. K., Boot P., Riet B. J., A Diesel Engine Model for the Dynamic Simulation of Propulsion Systems, Schip en Werf de Zee, Vol. 3, pp. 4-13, Jan. 1993. Search in Google Scholar

29. Próchnicki W., Model Matematyczny Układu Turbozespół Dowadowający - Silnik Spalinowe Przeznaczone do Badań Zmiennych Warunków Ruchu Zespołu Napędowego Statku, Praca Badawcza Nr. 86/93, Wydz. O. i O., Politechnika Gdanska, Gdansk, 1993. Search in Google Scholar

30. Próchnicki W., Modified System of Cooperation Between Turbocharger and Diesel Engine in Transient States, 1st International Symposium on Automatic Control of Ship Propulsion and Ocean Engineering Systems, Gdansk, 1994. Search in Google Scholar

31. Próchnicki W., Dzida M., Badania Wstępne Układu Turbozespół Doładowujący Silnik Spali-nowy w Zmiennych Warunkach Ruchu Zespołu Napędowego Statku, Praca badawcza No. 58/94, W. O. i O., Politechnika Gdańska, Poland, 1993. Search in Google Scholar

32. Kafar J., Mathematical Model of Dynamic Behaviour of a Diesel Engine in Propulsion System, Polish Maritime Research, No. 2/94, Poland, 1994. Search in Google Scholar

33. Lan W. C., Katagi T., Hashimoto T., Quasi Steady State Simulation of Diesel Engine Transient Performance and Design of Mechatronic Governor, Bulletin of MarEng Society of Japan, Vol. 24, No. 1, Feb. 1996. Search in Google Scholar

34. Olsen D. R., Simulation of a Free-Piston Engine with Digital Computer, SAE Trans., Vol. 66, pp. 668-682, 1958.10.4271/580267 Search in Google Scholar

35. Cook H. A., Analysis and Interpretation of Turbo-charged Diesel Engine Performance, SAE Trans., Vol. 67, 1959.10.4271/590203 Search in Google Scholar

36. Whitehouse N. D., et al., Methods of Predicting Some Aspects of Performance of a Diesel Engine Using a Digital Computer, Proc. IMechE, Vol. 176, No. 9, 1962.10.1243/PIME_PROC_1962_176_022_02 Search in Google Scholar

37. Borman G. L., Mathematical Simulation of Internal Combustion Engine Processes, PhD Thesis, University of Wisconsin, 1964. Search in Google Scholar

38. Streit E.E., Mathematical Simulation of Large Pulse-Turbocharged Two-Stroke Diesel Engine, PhD Thesis, University of Wisconsin, 1970.10.4271/710176 Search in Google Scholar

39. Streit E.E., Mathematical Simulation of Large Pulse-Turbocharged Two-Stroke Diesel Engine, PhD Thesis, University of Wisconsin, 1970.10.4271/710176 Search in Google Scholar

40. Marzouk M., Some Problems in Diesel Engine Research with Reference to Computer Control and Data Acquisition, Proc. IMechE, Vol. 190, No. 23/76, 1976.10.1243/PIME_PROC_1976_190_018_02 Search in Google Scholar

41. Benson S., The Thermodynamics and Gas Dynamics of Internal Combustion Engine, Vol. I, Oxford, Clarendon Press, 1982. Search in Google Scholar

42. Woschni G., Anisits F., Experimental Investigation and Mathematical Presentation of Rate of Heat Release in Diesel Engine Dependent upon Engine Operating Conditions, SAE Technical Paper Series 740086, 1974.10.4271/740086 Search in Google Scholar

43. Woschni G., A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE Technical Paper Series 670931, 196710.4271/670931 Search in Google Scholar

44. Wiebe I., Halbempirische Formel für die Verbrennungsgeschwindigkeit, Velage de Akademic der Wissenschaften der VdSSR, Moscow, 1967. Search in Google Scholar

45. Watson N., Marzouk M., A Non-Linear Digital Simulation of Turbocharged Diesel Engines under Transient Conditions, SAE Technical Paper Series 770123, 1977.10.4271/770123 Search in Google Scholar

46. Watson N., Janota M. S., Turbocharging the Internal Combustion Engine, MacMillan Publish-ers Ltd., London, 1982.10.1007/978-1-349-04024-7 Search in Google Scholar

47. Banisoleiman K., Bazari Z., Smith L. A., Mathieson N., Simulation of Diesel Engine Performance, Trans. IMarE, Vol. 105, pp. 117-135, 1993. Search in Google Scholar

48. Larmi M. J., Transient Response Model of Low Speed Diesel Engine in Ice-Breaking Cargo Vessels, PhD Thesis, Helsinki University of Technology, Helsinki, 1993. Search in Google Scholar

49. Ghaemi M. H.: Changing the Ship Propulsion System Performances Induced by Variation in Reaction Degree of Turbocharger Turbine, Journal of Polish CIMAC, Vol. 6., No.1 (2011), pages 55-70. Search in Google Scholar

50. Benson R. S., Wave Action in the Exhaust System of a Supercharged Two-Stroke Engine Model, International Journal of Mechanical Science, Vol. 1, p. 253, 1959.10.1016/0020-7403(60)90043-6 Search in Google Scholar

51. Benson R. S., et al., A Numerical Solution of Unsteady Flow Problems, International Journal of Mechanical Science, Vol. 6, pp. 117-144, 1964.10.1016/0020-7403(64)90009-8 Search in Google Scholar

52. Benson R. S., Woods W. A., Woollat D., Unsteady Flow in Simple Branch Systems, Proc. IMechE, Vol. 178, Pt. 3I(iii), 1963/4.10.1243/PIME_CONF_1963_178_223_02 Search in Google Scholar

53. Blair G. P., Arbuckle J. A., Unsteady Flow in the Induction System of a Reciprocating Internal Combustion Engine, SAE 700443, 1970.10.4271/700443 Search in Google Scholar

54. Blair G. P., Goulburn J. R., The Pressure Time History in the Exhaust System of a High Speed Reciprocating Internal Combustion Engine, SAE 67077, 1967.10.4271/670477 Search in Google Scholar

55. Blair G. P., McConnel H. J., Unsteady Gas Flow Through High Specific Output Four-Stroke Cycle Engines, SAE 740736, 1974.10.4271/740736 Search in Google Scholar

56. Bazari Z., A DI Diesel Combustion and Emission Predictive Capability for Use in Cycle Simulation, SAE Technical Paper Series 920462, 1992.10.4271/920462 Search in Google Scholar

57. Sujesh G., Ramesh S., Modeling and control of diesel engines: A systematic review, Alexandria Engineering Journal, Vol. 57, Issue 4, pp. 4033-4048, 2018, ISSN 1110-0168, https://doi.org/10.1016/j.aej.2018.02.011 (https://www.sciencedirect.com/science/article/pii/S1110016818301984)10.1016/j.aej.2018.02.011 Search in Google Scholar

58. Lee B., Jung D., Kim Y. W., Physics-Based Control Oriented Mean Value Model for Diesel Combustion Process with EGR Sensitivity, Proceedings of the ASME Dynamic Systems and Control Conference, 2011, pp. 1-8.10.1115/DSCC2011-6089 Search in Google Scholar

59. Hendricks E., and Sorenson S., Mean Value SI Engine Model for Control Studies, American Control Conference, 1990, pp. 1882-1887.10.23919/ACC.1990.4791054 Search in Google Scholar

60. Sengupta S., De S., Bhattacharyya A. K., Mukhopadhyay S., Deb A. K., Fault Detection of Air Intake Systems of SI Gasoline Engines using Mean Value and Within Cycle Models, 5th Annual IEEE Conference on Automation Science and Engineering, Bangalore, 2009, pp. 361-366.10.1109/COASE.2009.5234095 Search in Google Scholar

61. Yacoub Y., Mean Value Modeling and Control of a Diesel Engine Using Neural Networks, Dr. of Mechanical Engineering Dissertation, West Virginia University, Morgantown, USA, 1999. Search in Google Scholar

62. Theotokatos G. P., A Modeling Approach for the Overall Ship Propulsion Plant Simulation, 6th WSEAS International Conference on System Science and Simulation in Engineering, Venice, 2007, pp. 80-87. Search in Google Scholar

63. Guzzella L., Onder C.H., Introduction to Modeling and Control of Internal Combustion Engine Systems, Springer, 2010.10.1007/978-3-642-10775-7 Search in Google Scholar

64. Yum K. K., Modeling and Simulation of Transient Performance and Emission of Diesel Engine, NTNU - Trondheim 2012, pp. 64-68. Search in Google Scholar

65. Scappin F., Stefansson S. H., Haglind F., Andreasen A., Larsen U., Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines, Applied Thermal Engineering, Volume 37, May 2012, Pages 344-352 2012.10.1016/j.applthermaleng.2011.11.047 Search in Google Scholar

66. Kharroubi K., Chen H., A Semi-Experimental Modeling Approach for a Large Two-Stroke Marine Diesel Engine Simulation, 27th CIMAC World Congress, Shanghai, China, May 13-16, 2013, Paper no. 105. Search in Google Scholar

67. Baldi F., Theotokatos, G., Andersson K., Development of a combined mean value-zero dimensional model and application for a large marine four-stroke diesel engine simulation, https://www.researchgate.net/publication/277338414_Development_of_a_combined_mean_value-zero_dimensional_model_and_application_for_a_large_marine_four-stroke_Diesel_engine_simulation Search in Google Scholar

68. Altosole M., Campora U., Figari M., Laviola M., A Diesel Engine Modelling Approach for Ship Propulsion Real-Time Simulators, 2019, https://www.mdpi.com/2077-1312/7/5/138/pdf10.3390/jmse7050138 Search in Google Scholar

69. Zimmer K., Aufladung von Verbrennungsmotoren, 1985, ISBN: 978-3-540-15902-5, https://citations.springernature.com/book?doi=10.1007/978-3-662-05913-5 Search in Google Scholar

70. Streuli A., Application of the BBC Power Turbine, BBC Brown Boveri, 1985. Search in Google Scholar

71. Polish Norm PN-M-01521:1993, “Silniki spalinowe tłokowe – Terminologia”. Search in Google Scholar

72. Chen S. K., Flynn P., Development of a Compression Ignition Research Engine, SAE 650733, 1965.10.4271/650733 Search in Google Scholar

73. Heywood J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, 1988. Search in Google Scholar

74. MAN-B&W Computerized Engine Application System (CEAS), https://www.man-es.com/marine/products/planning-tools-and-downloads/ceas-engine-calculations. Search in Google Scholar

75. MAN B&W S65ME-C8.5-TII Project Guide Electronically Controlled Two-stroke Engines, online: https://www.academia.edu/35674638/MAN_B_and_W_S90ME_C8_TII_Project_Guide_Electronically_Controlled_Two_stroke_Engines Search in Google Scholar

76. TCA Turbocharger, The Benchmark, online: https://turbocharger.man-es.com/docs/default-source/shopwaredocuments/tca-turbochargerf451d068cde04720bdc9b8e95b7c0f8e.pdf?sfvrsn=81b197c6_3, & Project Guide TCA Turbocharger, online: https://turbocharger.man-es.com/docs/default-source/shopwaredocuments/tca.pdf?sfvrsn=98c91c09_2 Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences