Otwarty dostęp

Simulations and Tests of Composite Marine Structures Under Low-Velocity Impact


Zacytuj

1. Li X., Zhu Z., Li Y., Hu Z. (2020): Design and mechanical analysis of a composite t-type connection structure for marine structures. Polish Maritime Research, 2020, 27(2): 145-157.10.2478/pomr-2020-0036 Search in Google Scholar

2. Tomasz F., Tomasz M. (2020):Validation process for computational model of full-scale segment for design of composite footbridge. Polish Maritime Research, 27(2): 158-167. Search in Google Scholar

3. Li X., Zhu Z., Li Y., Hu Z., Dai L. (2020): A review on ultimate strength of composite-metal hybrid ships. Journal of Ship Mechanics, 24(05): 681-692. Search in Google Scholar

4. Niksa-Rynkiewicz T., Landowski M., Szalewski P. (2020): Application of apriori algorithm in the lamination process in yacht production. Polish Maritime Research, 27(3): 59-70.10.2478/pomr-2020-0047 Search in Google Scholar

5. Qiu A., Fu K., Zhao C., et al. (2013): Numerical understanding the impact behaviors of marine composite laminates. 1st International Conference on Advanced Composites for Marine Engineering. 2013. Search in Google Scholar

6. Thorsson S. I., Waas A. M., Rassaian M. (2018): Numerical investigation of composite laminates subject to low-velocity edge-on impact and compression after impact. Composite Structures, 203.10.1016/j.compstruct.2018.06.094 Search in Google Scholar

7. Liao B., Zhou J., Lin Y., et al. (2019): Low-velocity impact behavior and damage characteristics of CFRP laminates. Chinese Journal of High Pressure Physics, 33(04): 105-113. Search in Google Scholar

8. Oliveira Ferreira G. F., et al. (2019): Computational analyses of composite plates under low-velocity impact loading. Materials Today: Proceedings, 2019, 8. Search in Google Scholar

9. Thorsson S. I., Waas A M., Rassaian M. (2018): Low-velocity impact predictions of composite laminates using a continuum shell based modeling approach part A: Impact study. International Journal of Solids and Structures, 155: 185-200.10.1016/j.ijsolstr.2018.07.020 Search in Google Scholar

10. Panettieri E., Fanteria D., Montemurro M., Froustey C. (2016): Low-velocity impact tests on carbon/epoxy composite laminates: A benchmark study. Composites Part B, 107: 9-21.10.1016/j.compositesb.2016.09.057 Search in Google Scholar

11. Shi Y., Pinna C., Soutis C. (2014): Modelling impact damage in composite laminates: A simulation of intra- and inter-laminar cracking. Composite Structures, 114.10.1016/j.compstruct.2014.03.052 Search in Google Scholar

12. Xu Y., Zuo H., Lu X., et al. (2019): Numerical analysis and tests for low-velocity impact damage evaluation of composite material. Journal of Vibration and Shock, 38(03): 149-155. Search in Google Scholar

13. Gliszczynski A., et al. (2019): Barely visible impact damages of GFRP laminate profiles ‒ An experimental study. Composites Part B: Engineering, 158: 10-17.10.1016/j.compositesb.2018.09.044 Search in Google Scholar

14. Gliszczynski A. (2018): Numerical and experimental investigations of the low velocity impact in GFRP plates. Composites Part B Engineering, 138: 181-193.10.1016/j.compositesb.2017.11.039 Search in Google Scholar

15. Moura M. D., Marques A. T. (2002): Prediction of low velocity impact damage in carbon-epoxy laminates. Composite: Part A, 33: 361-368.10.1016/S1359-835X(01)00119-1 Search in Google Scholar

16. Moura M. D., Goncalves J. P. (2004): Modelling the interaction between matrix cracking and delamination in carbon-epoxy laminates under low velocity impact. Composites Science and Technology, 64: 1021-1027.10.1016/j.compscitech.2003.08.008 Search in Google Scholar

17. Hou J. P., Petrinic N., Ruiz C., Hallett S. R. (2000): Prediction of impact damage in composite plates. Composite Science and Technology, 60: 273-281.10.1016/S0266-3538(99)00126-8 Search in Google Scholar

18. Luo R. K. (2000): The evaluation of impact damage in a composite plate with a hole[J]. Composite Science and Technology, 60: 49-58.10.1016/S0266-3538(99)00095-0 Search in Google Scholar

19. Wen W., Xu Y., Cui H. (2007): Damage analysis of laminated composites under low velocity impact loading. Journal of Materials Engineering, 7: 6-11. Search in Google Scholar

20. Zhu W. (2012): Research on residual strength and fatigue performance of composite laminates with low-velocity impact damage. Dissertation, Nanjing: Nanjing University of Aeronautics and Astronautics. Search in Google Scholar

21. Zhu D., Zhang W., et al. (2014): Studies of several influence factors of low-velocity impact damaged characterization on composite laminates. Ship Science and Technology, 11: 57-65. Search in Google Scholar

22. Dong H., An X., et al. (2015): Progress in research on low velocity impact properties of fibre reinforced polymer matrix composite. Journal of Materials Engineering, 43(5): 89-100. Search in Google Scholar

23. Zu Z. (2020): Experimental investigation on repeated low velocity impact damage and residual compressive strength of honeycomb sandwich panel. Dissertation, Shandong: Shandong University of Technology. Search in Google Scholar

24. Guden M., Yildirim U., Hall I. W. (2004): Effect of strain rate on the compression behavior of a woven glass fiber/SC-15 composite. Polymer Testing, 23(6): 719-725.10.1016/j.polymertesting.2004.01.004 Search in Google Scholar

25. Hosur M., Alexander J., Vaidya U., et al. (2004): Studies on the off-axis high strain rate compression loading composites. Composite Structures, 63(1): 75-85.10.1016/S0263-8223(03)00134-X Search in Google Scholar

26. Hashin Z., Rotem A. (1973): A fatigue failure criterion for fiber reinforced materials. Journal of Composite Materials, 7(4): 448-464.10.1177/002199837300700404 Search in Google Scholar

27. Hashin Z. (1980): Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 47(2): 329-334.10.1115/1.3153664 Search in Google Scholar

28. Ferreira R. T. L., Ashcroft I. A. (2020): Optimal orientation of fibre composites for strength based on Hashin’s criteria optimality conditions. Structural and Multidisciplinary Optimization, 61: 2155-2176.10.1007/s00158-019-02462-w Search in Google Scholar

29. Chaht F. L., Mokhtari M., Benzaama H. (2019): Using a Hashin Criteria to predict the damage of composite notched plate under traction and torsion behavior. Fracture and Structural Integrity, 13(50): 331-341. Search in Google Scholar

30. Ha W. (2018): Study on failure modes and residual strength of composite laminates under low-velocity impact. Dissertation, Harbin: Harbin Institute of Technology. Search in Google Scholar

31. Yang Y., Liu X., Wang Y. Q., et al. (2017): A progressive damage model for predicting damage evolution of laminated composites subjected to three-point bending. Composites Science and Technology, 151.10.1016/j.compscitech.2017.08.009 Search in Google Scholar

32. Sun X. (2018): Numerical simulation of gradual damage on bolt-bonded hole composite laminates. Dissertation, Harbin: Harbin Engineering University. Search in Google Scholar

33. Shi J. (2015): The finite element analysis of the progressive damage of composite laminated plates based on ABAQUS. Dissertation, Shanxi: North University of China. Search in Google Scholar

34. Abir M. R., Tay T. E., Ridha M., Lee H. P. (2017): Modelling damage growth in composites subjected to impact and compression after impact. Composite Structures, 168: 13-25.10.1016/j.compstruct.2017.02.018 Search in Google Scholar

35. Benzeggagh M. L., Kenane M. (1996): Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56(4): 439-449.10.1016/0266-3538(96)00005-X Search in Google Scholar

36. Chen Y., Yu Z., Wang H. (2012): Numerical modeling of scale effects on the responses of laminated composite plate under low velocity impact. Chinese Journal of Solid Mechanics, 33(6): 574-582. Search in Google Scholar

37. Liu H. (2006): Numerical simulation of delamination damage in composite materials. Dissertation, Shanxi: Northwestern Polytechnical University. Search in Google Scholar

38. Ji Z., Guan Z., Li Z. (2016): Damage resistance property of stiffened composite panels under low-velocity impact. Journal of Beijing University of Aeronautics and Astronautics, 42(04): 751-761. Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences