Otwarty dostęp

Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification


Zacytuj

1. Wawrzyniak, N.; Stateczny, A. Automatic watercraft recognition and identification on water areas covered by video monitoring as extension for sea and river traffic supervision systems. Polish Marit. Res. 2018, 25, 5–13, doi: 10.2478/pomr-2018-0016.10.2478/pomr-2018-0016Search in Google Scholar

2. Kanjir, U.; Greidanus, H.; Oštir, K. Vessel detection and classification from spaceborne optical images: A literature survey. Remote Sens. Environ. 2018, 207, 1–26, doi: 10.1016/j. rse.2017.12.033.10.1016/j.rse.2017.12.033Search in Google Scholar

3. Bobkowska, K. Analysis of the objects images on the sea using Dempster-Shafer theory. In 2016 17th Int. Radar Symp. (IRS); 2016; pp. 78–81, doi: 10.1109/irs.2016.7497280.10.1109/IRS.2016.7497280Search in Google Scholar

4. Wang, C.; Jiang, S.; Zhang, H.; Wu, F.; Zhang, B. Ship detection for high-resolution SAR images based on feature analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 119–123, doi: 10.1109/LGRS.2013.2248118.10.1109/LGRS.2013.2248118Search in Google Scholar

5. Stateczny, A. Full implementation of the River Information Services of border and lower section of the Odra in Poland. In 2016 Baltic Geodetic Congress (BGC Geomatics); 2016; pp. 140–146, doi: 10.1109/BGC.Geomatics.2016.33.10.1109/BGC.Geomatics.2016.33Search in Google Scholar

6. Shao, Z.; Wang, L.; Wang, Z.; Du, W.; Wu, W. Saliency-aware convolution neural network for ship detection in surveillance video. IEEE Trans. Circuits Syst. Video Technol. 2019, doi: 10.1109/TCSVT.2019.2897980.10.1109/TCSVT.2019.2897980Search in Google Scholar

7. Wawrzyniak, N.; Hyla, T. Automatic ship identification approach for video surveillance systems. In Proceedings of ICONS 2019 The Fourteenth International Conference on Systems, IARIA, Valencia, Spain; 2019; pp. 65–68.Search in Google Scholar

8. Wawrzyniak, N.; Hyla, T.; Popik, A. Vessel detection and tracking method based on video surveillance. Sensors (Switzerland) 2019, 19, 23, doi: 10.3390/s19235230.10.3390/s19235230692876731795198Search in Google Scholar

9. Ferreira, J. C.; Branquinho, J.; Ferreira, P. C.; Piedade, F. Computer vision algorithms fishing vessel monitoring – Identification of vessel plate number. In International Symposium on Ambient Intelligence; 2017; pp. 9–17.10.1007/978-3-319-61118-1_2Search in Google Scholar

10. Bobkowska, K.; Wawrzyniak, N. The Hough transform in the classification process of inland ships. Sci. JOURNALS Marit. Univ. SZCZECIN-ZESZYTY Nauk. Akad. MORSKIEJ W SZCZECINIE 2019, 58, 9–15, doi: 10.17402/331.Search in Google Scholar

11. Akiyama, T.; Kobayashi, Y.; Kishigami, J.; Muto, K. CNN-based boat detection model for alert system using surveillance video vamera. In 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE); 2018; pp. 669–670, doi: 10.1109/GCCE.2018.8574704.10.1109/GCCE.2018.8574704Search in Google Scholar

12. Zhang, M. M.; Choi, J.; Daniilidis, K.; Wolf, M. T.; Kanan, C. Vais: A dataset for recognizing maritime imagery in the visible and infrared spectrums. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; 2015; pp. 10–16, doi: 10.1109/CVPRW.2015.7301291.10.1109/CVPRW.2015.7301291Search in Google Scholar

13. Solmaz, B.; Gundogdu, E.; Yucesoy, V.; Koç, A.; Alatan, A. A. Fine-grained recognition of maritime vessels and land vehicles by deep feature embedding. IET Comput. Vis. 2018, 12, 1121–1132, doi: 10.1049/iet-cvi.2018.5187.10.1049/iet-cvi.2018.5187Search in Google Scholar

14. Zhong, Z.; Jin, L.; Xie, Z. High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps. In 2015 13th International Conference on Document Analysis and Recognition (ICDAR); 2015; pp. 846–850, doi: 10.1109/ICDAR.2015.7333881.10.1109/ICDAR.2015.7333881Search in Google Scholar

15. Tang, P.; Wang, H.; Kwong, S. G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition. Neurocomputing 2017, 225, 188–197, doi: 10.1016/j. neucom.2016.11.023.10.1016/j.neucom.2016.11.023Search in Google Scholar

16. Al-Qizwini, M.; Barjasteh, I.; Al-Qassab, H.; Radha, H. Deep learning algorithm for autonomous driving using GoogLeNet. In 2017 IEEE Intelligent Vehicles Symposium (IV); 2017; pp. 89–96, doi: 10.1109/IVS.2017.7995703.10.1109/IVS.2017.7995703Search in Google Scholar

17. Aswathy, P.; Siddhartha; Mishra, D. Deep GoogLeNet features for visual object tracking. In 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS); 2018; pp. 60–66, doi: 10.1109/ICIINFS.2018.8721317.10.1109/ICIINFS.2018.8721317Search in Google Scholar

18. Xie, S.; Zheng, X.; Chen, Y.; Xie, L.; Liu, J.; Zhang, Y.; Yan, J.; Zhu, H.; Hu, Y. Artifact removal using improved GoogLeNet for sparse-view CT reconstruction. Sci. Rep. 2018, 8, 6700, doi: 10.1038/s41598-018-25153-w.10.1038/s41598-018-25153-w592808129712978Search in Google Scholar

19. Wu, C.; Wen, W.; Afzal, T.; Zhang, Y.; Chen, Y. A compact DNN: Approaching GoogLeNet-level accuracy of classification and domain adaptation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017, doi: 10.1109/CVPR.2017.88.10.1109/CVPR.2017.88Search in Google Scholar

20. Shin, H.; Roth, H.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 2016, 35, doi: 10.1109/TMI.2016.2528162 .10.1109/TMI.2016.2528162489061626886976Search in Google Scholar

21. Castro, W.; Oblitas, J.; De-La-Torre, M.; Cotrina, C.; Bazán, K.; Avila-George, H. Classification of cape gooseberry fruit according to its level of ripeness using machine learning techniques and different color spaces. IEEE Access 2019, 7, 27389–27400, doi: 10.1109/ACCESS.2019.2898223.10.1109/ACCESS.2019.2898223Search in Google Scholar

22. Szymak, P. Recognition of underwater objects using deep learning in Matlab. In International Conference on Applied Mathematics & Computational Science (ICAMCS.NET), 2018, doi: 10.1109/ICAMCS.NET46018.2018.00018.10.1109/ICAMCS.NET46018.2018.00018Search in Google Scholar

23. https://www.mathworks.com/help/deeplearning/examples/train-deep-learning-network-to-classify-new-images.html.Search in Google Scholar

24. Hyla, T.; Wawrzyniak, N. Automatic ship detection on inland waters: Problems and a preliminary solution. In Proceedings of ICONS 2019 The Fourteenth International Con-ference on Systems, IARIA, Valencia, Spain; 2019; pp. 56–60.Search in Google Scholar

25. Popik, A.; Zaniewicz, G.; Wawrzyniak, N. On-water video surveillance: data management for a ship identification system. Zesz. Nauk. Akad. Morskiej w Szczecinie 2019, 60, 56–63, doi: 10.17402/372.Search in Google Scholar

26. Wawrzyniak, N.; Hyla, T. Ships detection on inland waters using video surveillance system. In FIP International Conference on Computer Information Systems and Industrial Management; Springer, Cham, 2019; pp. 39–49, doi: 10.1007/978-3-030-28957-7_4.10.1007/978-3-030-28957-7_4Search in Google Scholar

27. Tharwat, A. Classification assessment methods. Appl. Comput. Informatics 2018, doi: 10.1016/j.aci.2018.08.003.10.1016/j.aci.2018.08.003Search in Google Scholar

28. Wlodarczyk-Sielicka, M.; Polap, D. Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters. Sensors (Basel). 2019, 19, 3051, doi: 10.3390/s19143051.10.3390/s19143051667876831295955Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences