Otwarty dostęp

Microstructure Evolution and Mechanical Properties of Underwater Dry Welded Metal of High Strength Steel Q690E Under Different Water Depths


Zacytuj

1. J. Łabanowski, “Development of under-water welding techniques”, Welding International, vol. 25, no. 12, pp. 933-937, 2011.10.1080/09507116.2010.540847Search in Google Scholar

2. M. Rowe and S. Liu, “Recent developments in underwater wet welding”, Science and Technology of Welding and Joining, vol. 6, no. 6, pp. 387-396, 2001.10.1179/stw.2001.6.6.387Search in Google Scholar

3. Y. Shi et al., “Microstructure evolution and mechanical properties of underwater dry and local dry cavity welded joints of 690 MPa grade high strength steel”, Materials, vol. 11, no. 1, p. 167, 2018.10.3390/ma11010167579366529361743Search in Google Scholar

4. S. Godwin Barnabas, S. Rajakarunakaran, G. Satish Pandian, A. Muhamed Ismail Buhari, and V. Muralidharan, “Review on enhancement techniques necessary for the improvement of underwater welding”, Materials Today: Proceedings, 2020.10.1016/j.matpr.2020.03.725Search in Google Scholar

5. N. Guo, Y. Fu, X. Xing, Y. Liu, S. Zhao, and J. Feng, “Underwater local dry cavity laser welding of 304 stainless steel”, Journal of Materials Processing Technology, vol. 260, pp. 146-155, 2018.10.1016/j.jmatprotec.2018.05.025Search in Google Scholar

6. J. Tomków, J. Łabanowski, D. Fydrych, G. Rogalski, “Cold cracking of S460N steel welded in water environment”, (in English), Polish Maritime Research, vol. 25, no. 3, pp. 131-136, 01 Sep. 2018.10.2478/pomr-2018-0104Search in Google Scholar

7. C. J. Bayley and A. Mantei, “Influence of weld heat input on the fracture and metallurgy of HSLA-65”, Canadian Metallurgical Quarterly, vol. 48, no. 3, pp. 311-316, 2009.10.1179/cmq.2009.48.3.311Search in Google Scholar

8. C. Pandey, M. M. Mahapatra, P. Kumar, F. Daniel, and B. Adhithan, “Softening mechanism of P91 steel weldments using heat treatments”, Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 297-310, 2019.10.1016/j.acme.2018.10.005Search in Google Scholar

9. C. L. Davis and J. E. King, “Effect of cooling rate on intercritically reheated microstructure and toughness in high strength low alloy steel”, Materials Science and Technology, vol. 9, no. 1, pp. 8-15, 1993.10.1179/mst.1993.9.1.8Search in Google Scholar

10. A. Lambert, A. Lambert, J. Drillet, A. F. Gourgues, T. Sturel, and A. Pineau, “Microstructure of martensite–austenite constituents in heat affected zones of high strength low alloy steel welds in relation to toughness properties”, Science and Technology of Welding and Joining, vol. 5, no. 3, pp. 168-173, 2000.10.1179/136217100101538164Search in Google Scholar

11. D. M. Viano, N. U. Ahmed, and G. O. Schumann, “Influence of heat input and travel speed on microstructure and mechanical properties of double tandem submerged arc high strength low alloy steel weldments”, Science and Technology of Welding and Joining, vol. 5, no. 1, pp. 26-34, 2000.10.1179/stw.2000.5.1.26Search in Google Scholar

12. J. Tomków and A. Janeczek, “Underwater in situ local heat treatment by additional stitches for improving the weldability of steel”, Applied Sciences, vol. 10, no. 5, 2020.10.3390/app10051823Search in Google Scholar

13. H. Chen, N. Guo, C. Liu, X. Zhang, C. Xu, and G. Wang, “Insight into hydrostatic pressure effects on diffusible hydrogen content in wet welding joints using in-situ X-ray imaging method”, International Journal of Hydrogen Energy, vol. 45, no. 16, pp. 10219-10226, 2020.10.1016/j.ijhydene.2020.01.195Search in Google Scholar

14. J. Tomków, D. Fydrych, G. Rogalski, and J. Łabanowski, “Temper bead welding of S460N steel in wet welding conditions”, Advances in Materials Science, vol. 18, no. 3, pp. 5-14, 01 Sep. 2018.10.1515/adms-2017-0036Search in Google Scholar

15. H. Zhang, X. Dai, J. Feng, and L. L. Hu, “Preliminary investigation on real-time induction heating-assisted underwater wet welding”, vol. 1, pp. 8-15, 2015.Search in Google Scholar

16. J. Wang, Q. Sun, T. Zhang, X. Tao, P. Jin, and J. Feng, “Arc stability indexes evaluation of ultrasonic wave-assisted underwater FCAW using electrical signal analysis”, The International Journal of Advanced Manufacturing Technology, vol. 103, no. 5, pp. 2593-2608, 2019.10.1007/s00170-019-03463-1Search in Google Scholar

17. H. Chen, N. Guo, K. Xu, C. Xu, L. Zhou, and G. Wang, “In-situ observations of melt degassing and hydrogen removal enhanced by ultrasonics in underwater wet welding”, Materials & Design, vol. 188, p. 108482, 2020.10.1016/j.matdes.2020.108482Search in Google Scholar

18. J. Tomków, D. Fydrych, and G. Rogalski, “Role of bead sequence in underwater welding”, Materials, vol. 12, no. 20, 2019.10.3390/ma12203372682935331623063Search in Google Scholar

19. C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, and A. Srivastava, “Microstructure and mechanical property relationship for different heat treatment and hydrogen level in multi-pass welded P91 steel joint”, Journal of Manufacturing Processes, vol. 28, pp. 220-234, 2017.10.1016/j.jmapro.2017.06.009Search in Google Scholar

20. C. Pandey, M. M. Mahapatra, P. Kumar, and S. Sirohi, “Fracture behaviour of crept P91 welded sample for different post weld heat treatments condition”, Engineering Failure Analysis, vol. 95, pp. 18-29, 2019.10.1016/j.engfailanal.2018.08.029Search in Google Scholar

21. U. Ofem, S. Ganguly, S. Williams, and N. Woodward, “Investigation of thermal cycle and metallurgical characteristics of hyperbaric gas metal arc welding”, International Journal of Offshore and Polar Engineering, vol. 24, no. 03, pp. 206-212, 2014.Search in Google Scholar

22. J. Huang, L. Xue, J. Huang, Y. Zou, H. Niu, and D. Tang, “Arc behavior and joints performance of CMT welding process in hyperbaric atmosphere”, Acta Metall Sin, vol. 52, no. 1, pp. 93-99, 2015.Search in Google Scholar

23. I. Bunaziv, R. Aune, V. Olden, and O. M. Akselsen, “Dry hyperbaric welding of HSLA steel up to 35 bar ambient pressure with CMT arc mode”, The International Journal of Advanced Manufacturing Technology, vol. 105, no. 5, pp. 2659-2676, 2019.10.1007/s00170-019-04511-6Search in Google Scholar

24. Y. Hu, Y. Shi, K. Sun, and X. Shen, “Microstructure evolution and mechanical performance of underwater local dry welded DSS metals at various simulated water depths”, Journal of Materials Processing Technology, vol. 264, pp. 366-376, 2019.10.1016/j.jmatprotec.2018.09.023Search in Google Scholar

25. V. B. Ginzburg and R. Ballas, Flat rolling fundamentals. CRC Press, 2000.10.1201/9781482277357Search in Google Scholar

26. S. Kou, Welding Metallurgy, 2nd ed. Hoboken: JohnWiley & Sons, 2003; pp. 37–42.10.1007/s11837-003-0137-4Search in Google Scholar

27. ASTM E8 / E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, Available: http://www.astm.org.Search in Google Scholar

28. A. S. Azar, N. Woodward, H. Fostervoll, and O. M. Akselsen, “Statistical analysis of the arc behavior in dry hyperbaric GMA welding from 1 to 250 bar”, Journal of Materials Processing Technology, vol. 212, no. 1, pp. 211-219, 2012.10.1016/j.jmatprotec.2011.09.006Search in Google Scholar

29. J. Farrell, “Hyperbaric welding of duplex stainless steel pipelines offshore”, Cranfield University, 1996.Search in Google Scholar

30. I. A. Yakubtsov, P. Poruks, and J. D. Boyd, “Microstructure and mechanical properties of bainitic low carbon high strength plate steels”, Materials Science and Engineering: A, vol. 480, no. 1, pp. 109-116, 2008.10.1016/j.msea.2007.06.069Search in Google Scholar

31. S. S. Babu, “Acicular ferrite and bainite in Fe–Cr–C weld deposits”, University of Cambridge, 1992.Search in Google Scholar

32. Y. M. Kim, H. Lee, and N. J. Kim, “Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels”, Materials Science and Engineering: A, vol. 478, no. 1, pp. 361-370, 2008.10.1016/j.msea.2007.06.035Search in Google Scholar

33. M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, and E. Rahimi, “Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals”, Micron, vol. 45, pp. 107-114, 2013.10.1016/j.micron.2012.11.00423238108Search in Google Scholar

34. I. Gutiérrez, “Effect of microstructure on the impact toughness of Nb-microalloyed steel: Generalisation of existing relations from ferrite–pearlite to high strength microstructures”, Materials Science and Engineering: A, vol. 571, pp. 57-67, 2013.10.1016/j.msea.2013.02.006Search in Google Scholar

35. G. Terán, S. Capula-Colindres, D. Angeles-Herrera, J. C. Velázquez, and M. J. Fernández-Cueto, “Estimation of fracture toughness KIC from Charpy impact test data in T-welded connections repaired by grinding and wet welding”, Engineering Fracture Mechanics, vol. 153, pp. 351-359, 2016.10.1016/j.engfracmech.2015.12.010Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences