Otwarty dostęp

Hydrodynamic Model of the New Waterway Through the Vistula Spit


Zacytuj

1. Szymkiewicz, R. Hydrodynamics of Vistula Lagoon; Warsaw, 1992.Search in Google Scholar

2. Cieśliński, R. Hydrochemical variability of the ecosystem of the Gulf of Elbląg (north-eastern Poland). Baltica 2016, 29, 121–132.10.5200/baltica.2016.29.11Search in Google Scholar

3. Cieśliński, R.; Lewandowski, A. Hydrological regime of the Vistula Lagoon and the possible changes due to the construction of the waterway connecting the Vistula Bay with the Gulf of Gdansk. Inżynieria Morska i Geotechnika 2013, 69–78.Search in Google Scholar

4. Chubarenko, I.P.; Chubarenko, B.V. General water dynamics of the Vistula Lagoon. Environmental and Chemical Physics 2002, 24, 213–217.Search in Google Scholar

5. Szydłowski, M.; Kolerski, T.; Zima, P. Impact of the artificial strait in the Vistula Spit on the hydrodynamics of the Vistula Lagoon (Baltic Sea). Water 2019, 11, 990.10.3390/w11050990Search in Google Scholar

6. Szymkiewicz, R. A mathematical model of storm surge in the Vistula Lagoon, Poland. Coastal Engineering 1992, 16, 181–203.10.1016/0378-3839(92)90036-TSearch in Google Scholar

7. Nadolny, A.; Samulak, M. Construction of a waterway connecting the Vistula Lagoon with the Bay of Gdańsk 2017.Search in Google Scholar

8. García-Oliva, M.; Pérez-Ruzafa, Á.; Umgiesser, G.; McKiver, W.; Ghezzo, M.; De Pascalis, F.; Marcos, C. Assessing the hydrodynamic response of the Mar Menor Lagoon to dredging inlets tinterventions through numerical modelling. Water 2018, 10, 959.10.3390/w10070959Search in Google Scholar

9. Dubrawski, R.; Zachowicz, J. Navigation channel in the Vistula Spit – Positives and negatives for the marine environment. Inżynieria Morska i Geotechnika 1997, 301–307.Search in Google Scholar

10. Dembicki, E.; Jednorał, T.; Sedler, B.; Jaśkowski, J.; Zadroga, B. Navigation channel in Polish part of Vistula Sandbar. Inżynieria Morska i Geotechnika 2006, 275–286.Search in Google Scholar

11. Szymkiewicz, R. Analysis of a concept of changing the hydrodynamic conditions of the Vistula Lagoon. Inżynieria Morska 1984, 258–260.Search in Google Scholar

12. Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction; 3rd ed.; Springer-Verlag: Berlin Heidelberg, 2009; ISBN 978-3-540-25202-3.10.1007/b79761Search in Google Scholar

13. Chow, V.T. Open-channel hydraulics; McGraw-Hill Book Company: New York, 1959;Search in Google Scholar

14. Zima, P. Modeling of the two-dimensional flow caused by sea conditions and wind stresses on the example of Dead Vistula. Polish Maritime Research 2018, 25, 166–171.10.2478/pomr-2018-0038Search in Google Scholar

15. Gąsiorowski, D. Analysis of floodplain inundation using 2D nonlinear diffusive wave equation solved with splitting technique. Acta Geophys. 2013, 61, 668–689.Search in Google Scholar

16. Szydłowski, M. Mathematical modelling of flash floods in natural and urban areas. In Proceedings of the Transboundary Floods: Reducing Risks Through Flood Management; Marsalek, J., Stancalie, G., Balint, G., Eds.; Springer Netherlands, 2006; pp. 143–153.10.1007/1-4020-4902-1_14Search in Google Scholar

17. Kolerski, T.; Zima, P.; Szydłowski, M. Mathematical modeling of ice thrusting on the shore of the Vistula Lagoon (Baltic Sea) and the proposed artificial island. Water 2019, 11, 2297.10.3390/w11112297Search in Google Scholar

18. Kwiatkowski, J.; Rasmussen, E.K.; Ezhova, E.; Chubarenko, B.V. The eutrophication model of the Vistula Lagoon. Oceanological Studies 1997, 26, 5–33.Search in Google Scholar

19. Chubarenko, I.; Tchepikova, I. Modelling of man-made contribution to salinity increase into the Vistula Lagoon (Baltic Sea). Ecological Modelling 2001, 138, 87–100.Search in Google Scholar

20. Ołdakowski, B.; Kwiatkowski, J. Forecast model of water quality of Vistula Lagoon. Inżynieria Morska i Geotechnika 1995.Search in Google Scholar

21. Bielecka, M.; Kazmierski, J. A 3d mathematical model of Vistula Lagoon hydrodynamics – General assumptions and results of preliminary calculations; ECSA 8, Dublin, 2003; pp. 140–145.Search in Google Scholar

22. Kruk, M.; Kempa, M.; Tjomsland, T.; Durand, D. The use of mathematical models to predict changes in the environment of the Vistula Lagoon. In Vistula Lagoon – Natural environment and modern methods of his research project on the example of Visla; Publishing PWSZ: Elbląg, 2011; pp. 165–180.Search in Google Scholar

23. LeVeque, R.J. Finite Volume Methods for Hyperbolic Problems; Cambridge University Press, 2002; ISBN 978-0-521-00924-9.10.1017/CBO9780511791253Search in Google Scholar

24. Burzyński, K.; Szydłowski, M. Numerical simulation of rapidly varied water flow in ‘Wild River’ type water slide. Archives of Hydro-Engineering and Environmental Mechanics 2003, 50, 3–23.Search in Google Scholar

25. Szydłowski, M. Numerical simulation of open channel flow between bridge piers. TASK Quarterly 2011, 15, 271–282.Search in Google Scholar

26. Szydłowski, M. Numerical modeling of hydrodynamics as a tool for design of the leisure and sport water structures. Acta Scientiarum Polonorum – Formatio Circumiectus 2016, 15, 353–367.10.15576/ASP.FC/2016.15.4.353Search in Google Scholar

27. Szydłowski, M.; Mikos-Studnicka, P. Shallow water equations as a mathematical model of whitewater course hydrodynamics. In Recent Trends in Environmental Hydraulics; Geoplanet: Earth and Planetary Sciences; Springer Berlin Heidelberg: Berlin Heidelberg, 2020; p. accepted to publish.10.1007/978-3-030-37105-0_24Search in Google Scholar

28. Szydłowski, M. Application of hydrodynamics model for a case study of the Kolbudy II Reservoir Embankment hypothetical failure. In Experimental Methods in Hydraulic Research; Rowinski, P., Ed.; Geoplanet: Earth and Planetary Sciences; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp. 299–306 ISBN 978-3-642-17475-9.10.1007/978-3-642-17475-9_22Search in Google Scholar

29. Szydłowski, M.; Kolerski, T. Numerical modeling of water and ice dynamics for analysis of flow around the Kiezmark Bridge piers. In Free Surface Flows and Transport Processes; Geoplanet: Earth and Planetary Sciences; Springer Berlin Heidelberg: Berlin, Heidelberg, 2018; pp. 465–476.10.1007/978-3-319-70914-7_32Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences