Otwarty dostęp

A New Six-DoF Parallel Mechanism for Captive Model Test


Zacytuj

1. Muscari R., Dubbioso G., Viviani M., Mascio A. D. (2017): Analysis of the asymmetric behavior of propeller–rudder system of twin screw ships by CFD. Ocean Engineering, 143, 269–281.10.1016/j.oceaneng.2017.07.056Search in Google Scholar

2. Lidtke A. D., Turnock S. R., Downes J. (2017): Hydrodynamic design of underwater gliders using k-kL-ω RANS transition model. IEEE Journal of Oceanic Engineering, 43(2), 356–368.Search in Google Scholar

3. Chen J., Wei J., Yang L. (2018): Hydrodynamic optimization of appendages on ROPAX by using CFD and model tests. Ship Building of China, 59(2), 33–41.Search in Google Scholar

4. Jianglong S., Haiwen T., Yongnian C., De X., Jiajian Z. (2016): A study on trim optimization for a container ship based on effects due to resistance. Journal of Ship Research, 60(1), 30–47.10.5957/JOSR.60.1.150022Search in Google Scholar

5. Haiwen T., Yunfei Y. et al. (2018): A modified admiralty coefficient for estimating power curves in EEDI calculations. Ocean Engineering, 150, 309–317.10.1016/j.oceaneng.2017.12.068Search in Google Scholar

6. Chuang Z., Steen S. (2013): Speed loss of a vessel sailing in oblique waves. Ocean Engineering, 64, 88–99.10.1016/j.oceaneng.2013.02.018Search in Google Scholar

7. Lee P.-M., Jun B.-H., Kim K.-H., Lee J.-H., Aoki T., Hyakudome T. (2007: Simulation of an inertial acoustic navigation system with range aiding for an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 32(2), 327–345.10.1109/JOE.2006.880585Search in Google Scholar

8. Li B., Su T.-C. (2016): Nonlinear heading control of an autonomous underwater vehicle with internal actuators. Ocean Engineering, 125, 103–112.10.1016/j.oceaneng.2016.08.010Search in Google Scholar

9. Kim J.-Y., Kim K.-H., Choi H.-S., Seong W.-J., Lee K.-Y. (2002): Estimation of hydrodynamic coefficients for an AUV using nonlinear observers. IEEE Journal of Oceanic Engineering, 27(4), 830–840.10.1109/JOE.2002.805098Search in Google Scholar

10. Mansoorzadeh S., Javanmard E. (2014): An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods. Journal of Fluids & Structures, 51(1), 161–171.10.1016/j.jfluidstructs.2014.09.001Search in Google Scholar

11. Gala F. L., Dubbioso G., Ortolani F., et al. (2012): Preliminary evaluation of control and manoeuvring qualities for the AUTODROP-UUV vehicle. IFAC Proceedings Volumes, 45(27), 132–137.10.3182/20120919-3-IT-2046.00023Search in Google Scholar

12. Li G. (2011): Numerical and experimental research on hydrodynamic characters of shuttle submersible. Harbin Engineering University, Harbin, 2011.Search in Google Scholar

13. Avila J. P. J., Adamowski J. C. (2011): Experimental evaluation of the hydrodynamic coefficients of a ROV through Morison’s equation. Ocean Engineering, 38(17), 2162–2170.10.1016/j.oceaneng.2011.09.032Search in Google Scholar

14. Xu F., Zou Z. J., Yin J. C., et al. (2013): Identification modeling of underwater vehicles’ nonlinear dynamics based on support vector machines. Ocean Engineering, 67, 68–76.10.1016/j.oceaneng.2013.02.006Search in Google Scholar

15. Zhao J.-X. (2011): The hydrodynamic performance calculation and motion simulation of an AUV with appendages. Harbin Engineering University, Harbin.Search in Google Scholar

16. Pang Y.-J., Wang Q.-Y., Li W.-P. (2017): Model test study of influence of propeller and its rotation on hydrodynamics of submarine maneuverability. Journal of Harbin Engineering University, 38(1), 109–114.Search in Google Scholar

17. Kijima K., Nakiri Y. (1990): On a numerical simulation for predicting of ship manoeuvring performance. 19th International Towing Tank Conference, Madrid, Spain, Vol. 2, 559–568.Search in Google Scholar

18. Maekawa K., Shuto C., Karasuno K., Nonaka K. (1999): Estimation of added mass coefficients mx’, my’ by using CFD through oblique towing test with constant acceleration. Journal of Kansai Society of Naval Architects Japan, 232, 55–61.Search in Google Scholar

19. Kijima K., Nakari Y., Furukawa Y. (2000): On a prediction method for ship manouevrability. International Workshop on Ship Manoeuvrability at the Hamburg Ship Model Basin, Hamburg, Germany, pp. 536–543.Search in Google Scholar

20. Petersen, J. B., Lauridsen, B. (2000): Prediction of hydrodynamic forces from a database of manoeuvring derivatives. MARSIM 2000, Orlando, FL, USA, pp. 401–420.Search in Google Scholar

21. Yang C.-F., Wu B.-S., Shen H.-C. (2006): Analysis of experiment validation for full- ship maneuverability hydrodynamic forces prediction. Journal of Ship Mechanics, 10(4), 559–568.Search in Google Scholar

22. Gao T., Wang Y.-X., Pang Y.-J., Chen Q.-L., Tang Y.-G. (2018): A time-efficient CFD approach for hydrodynamic coefficient determination and model simplification of submarine. Ocean Engineering, 154, 16–26.10.1016/j.oceaneng.2018.02.003Search in Google Scholar

23. Stewart D. (1966): A platform with six degrees of freedom. Aircraft Engineering and Aerospace Technology, 38(4), 30–35.10.1108/eb034141Search in Google Scholar

24. Yurt S. N., Ozkol I., Hajiyev C. (2004): Error analysis and motion determination of a flight simulator. Aircraft Engineering and Aerospace Technology, 76(2), 185–192.10.1108/00022660410526051Search in Google Scholar

25. Landry S. J., Jacko J. (2012): Pilot Procedure-Following Behavior during Closely Spaced Parallel Approaches. International Journal of Human-Computer Interaction, 28(2), 131–139.10.1080/10447318.2012.634766Search in Google Scholar

26. Phoemsapthawee S., Le Boulluec M. (2013): A potential flow based flight simulator for an underwater glider. Journal of Marine Science and Application, 12(1), 112–121.10.1007/s11804-013-1165-xSearch in Google Scholar

27. Kim G. S. (2007): Design of a six-axis wrist force/moment sensor using FEM and its fabrication for an intelligent robot. Sensors and Actuators A Physical, 133(1), 27–34.10.1016/j.sna.2006.03.038Search in Google Scholar

28. Nekrasov V: (2019): Mean-Square Non-Local Stability of Ship in Storm Conditions of Operation. Polish Maritime Research, 26(4), 6-15.10.2478/pomr-2019-0061Search in Google Scholar

29. Kun D., Yunbo L. (2019): Manoeuvring Prediction of KVLCC2 with Hydrodynamic Derivatives Generated by a Virtual Captive Model Test. Polish Maritime Research, 26(4), 16-26.10.2478/pomr-2019-0062Search in Google Scholar

30. CSSRC (2018): Ship test report for KELC tank ship. Report (Wuhan China), pp. 17–24.Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences