Otwarty dostęp

Effect of Engine Speeds and Dimethyl Ether on Methyl Decanoate HCCI Combustion and Emission Characteristics Based on Low-Speed Two-Stroke Diesel Engine

 oraz    | 17 lip 2020

Zacytuj

1. Ashraful, A. M., Masjuki, H. H., Kalam, M. A., Rizwanul Fattah, I. M., Imtenan, S., Shahir, S. A., Mobarak, H. M. (2014) Production and Comparison of Fuel Properties, Engine Performance, and Emission Characteristics of Biodiesel from Various Non–Edible Vegetable Oils: A Review. Energy Convers. Manage., Vol. 80, 202−228.10.1016/j.enconman.2014.01.037Search in Google Scholar

2. Buyukkaya, E. (2010) Effects of Biodiesel on A DI Diesel Engine Performance, Emission and Combustion Characteristics. Fuel, Vol. 89(10), 3099–3105.10.1016/j.fuel.2010.05.034Search in Google Scholar

3. Cho, C. P., Pyo, Y. D., Jang, J. Y., Kim, G. C., Shin, Y. J. (2017) NOx Reduction and N2O Emissions in A Diesel Engine Exhaust Using Fe–Zeolite and Vanadium based SCR Catalysts. Appl. Therm. Eng., Vol. 110, 18−24.10.1016/j.applthermaleng.2016.08.118Search in Google Scholar

4. Dayma, G., Togbé, C., Dagaut, P. (2009) Detailed Kinetic Mechanism for the Oxidation of Vegetable Oil Methyl Esters: New Evidence from Methyl Heptanoate. Energy Fuels, Vol. 23(9), 4254–4268.10.1021/ef900184ySearch in Google Scholar

5. Demirbas, A. (2007) Importance of Biodiesel as Transportation Fuel. Energy Policy, Vol. 35(9), 4661–4670.10.1016/j.enpol.2007.04.003Search in Google Scholar

6. European Parliament, 2050, The Future Begins Today-Recommendations for the EU’s Future Integrated Policy on Climate Change.Search in Google Scholar

7. Fischer, S. L., F. L. Dryer., Curran, H. J. (2000) The Reaction Kinetics of Dimethyl Ether. I: High–Temperature Pyrolysis and Oxidation in Flow Reactors. Int. J. Chem. Kinet., Vol. 32(12), 713–740.10.1002/1097-4601(2000)32:12<713::AID-KIN1>3.0.CO;2-9Search in Google Scholar

8. Fisher, E. M., Pitz, W. J., Curran, H. J., Westbrook, C. K. (2000) Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuel. Proc. Combust. Inst., Vol. 28(2), 1579–1586.10.1016/S0082-0784(00)80555-XSearch in Google Scholar

9. Gaïl, S., Thomson, M. J., Sarathy, S. M., Syed, S. A., Dagaut, P., Dievart, P., Marchese, A. J., Dryer, F. L. (2007) A Wide– Ranging Kinetic Modeling Study of Methyl Butanoate Combustion. Proc. Combust. Inst., Vol. 31 (1), 305−311.10.1016/j.proci.2006.08.051Search in Google Scholar

10. Geng, P., Tan, Q. M., Zhang, C. H., Wei, L. J., He, X. Z., Cao, E. M., Jiang, K. (2016) Experimental Investigation on NOx and Green House Gas Emissions from A Marine Auxiliary Diesel Engine Using Ultralow Sulfur Light Fuel. Sci. Total Environ., Vol. 572, 467–475.10.1016/j.scitotenv.2016.08.04727544351Search in Google Scholar

11. He, C., Ge, Y. S., Tan, J. W., You, K. W., Han, X. K., Wang, J. F. (2010) Characteristics of Polycyclic Aromatic Hydrocarbons Emissions of Diesel Engine Fueled with Biodiesel and Diesel. Fuel, Vol. 89(8), 2040–2046.10.1016/j.fuel.2010.03.014Search in Google Scholar

12. Haas, M. J., Scott, K. M., Alleman, T. L., McCormick, R. L. (2001) Engine Performance of Biodiesel Fuel Prepared from Soybean Soapstock: A High Quality Renewable Fuel Produced from A Waste Feedstock. Energy Fuels, Vol. 15(5), 1207−1212.10.1021/ef010051xSearch in Google Scholar

13. Herbinet, O., Pitz, W. J., Westbrook, C. K. (2008) Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate. Combust. Flame, Vol. 154(3), 507−528.10.1016/j.combustflame.2008.03.003Search in Google Scholar

14. Hou, J., Zhang, P., Yuan, X., Zheng, Y. (2011) Life Cycle Assessment of Biodiesel from Soybean, Jatropha and Microalgae in China Conditions. Renew. Sust. Energ Rev., Vol. 15(9), 5081−5091.10.1016/j.rser.2011.07.048Search in Google Scholar

15. Jeon, J., Lee, J. T., Park, S. (2016) Nitrogen Compounds (NO, NO2, N2O and NH3) in NOx Emissions from Commercial EURO VI Type Heavy–Duty Diesel Engines with A Urea– Selective Catalytic Reduction System. Energy Fuels, Vol. 30(8), 6828–6834.10.1021/acs.energyfuels.6b01331Search in Google Scholar

16. Jothi, N. K. M., Nagarajan, G., Renganarayanan, S. (2007) Experimental Studies on Homogeneous Charge CI Engine Fueled with LPG Using DEE as An Ignition Enhancer. Renew Energ., Vol. 32(9), 1581–1593.10.1016/j.renene.2006.08.007Search in Google Scholar

17. Kim, M. Y., Yoon, S. H., Ryu, B. W., Lee, C. S. (2008) Combustion and Emission Characteristics of DME as An Alternative Fuel for Compression Ignitions with A High Pressure Injection System. Fuel, Vol. 87(12), 2779–2786.10.1016/j.fuel.2008.01.032Search in Google Scholar

18. Koshe-Höinghaus, K., Oßwald, P., Cool, T., Kasper, T., Hansen, N., Qi, F., Westbrook, C. K., Westmoreland, P. R. (2010) Biofuel Combustion Chemistry: From Ethanol to Biodiesel. Angew. Chem. Int., Vol. 49(21), 3572−3597.10.1002/anie.200905335Search in Google Scholar

19. Kumar, P., Rehman, A. (2016) Bio-Diesel in Homogeneous Charge Compression Ignition (HCCI) Combustion. Renew. Sust. Energ. Rev., Vol. 56, 536–550.10.1016/j.rser.2015.11.088Search in Google Scholar

20. Lai, J. Y. W., Lin, K. C., Violi, A. (2011) Biodiesel Combustion: Advances in Chemical Kinetic Modeling. Prog. Energy Combust. Sci., Vol. 37(1), 1−14.10.1016/j.pecs.2010.03.001Search in Google Scholar

21. Lu, X. C., Han, D. Huang, Z. (2011) Fuel Design and Management for the Control of Advanced Compression-ignition Combustion Modes. Prog. Energ. Combust., Vol. 37(6), 741–783.10.1016/j.pecs.2011.03.003Search in Google Scholar

22. Ma, J. J., Lue, X. C., Ji, L. B. (2008) An Experimental Study of HCCI-DI Combustion and Emissions in A Diesel Engine with Dual Fuel. Int. J. Therm. Sci., Vol. 47(9), 1235–1242.10.1016/j.ijthermalsci.2007.10.007Search in Google Scholar

23. Miller, J., Bowman, C. (1989) Mechanism and Modeling of Nitrogen Chemistry in Combustion. Prog. Energy Combust. Sci., Vol. 15(4), 287–338.10.1016/0360-1285(89)90017-8Search in Google Scholar

24. Moradi, G. R., Dehghani, S., Ghanei, R. (2012) Measurements of Physical Properties During Transesterification of Soybean Oil to Biodiesel for Prediction of Reaction Progress. Energy Convers. Manage., Vol. 61, 67−70.10.1016/j.enconman.2012.03.015Search in Google Scholar

25. Ng, J. H., Ng, H. K., Gan, S. Y. (2012) Characterisation of Engine–Out Responses from A Light-Duty Diesel Engine Fuelled with Palm Methyl Ester (PME). Appl. Energ., Vol. 90(1), 58–67.10.1016/j.apenergy.2011.01.028Search in Google Scholar

26. Olsson, J. O., Tunestal, P., Johansson, B. (2001) Closed-Loop Control of An HCCI Engine. SAE, Vol. 110, 1076–1185.10.4271/2001-01-1031Search in Google Scholar

27. Park, S. H., Lee, C. S. (2014) Applicability of Dimethyl Ether (DME) in A Compression Ignition Engine as An Alternative Fuel. Energy Convers. Manage., Vol. 86, 848–863.10.1016/j.enconman.2014.06.051Search in Google Scholar

28. Pienkos, P. T., Darzins, A. (2009) The Promise and Challenges of Microalgal–Derived Biofuels. Biofuels Bioprod Bioref., Vol. 3(4), 431–440.10.1002/bbb.159Search in Google Scholar

29. Radica, G., Antonić, R., Račić, N. (2009) Engine Working Cycle Analysis for Diagnostic and Optimisation Purposes. Brodogradnja, Vol. 60(4), 378−387.Search in Google Scholar

30. Rajasekar, E., Murugesan, A., Subramanian, R., Nedunchezhian, N. (2010) Review of NOx Reduction Technologies in CI Engines Fuelled with Oxygenated Biomass Fuels. Renew. Sust Energ Rev., Vol. 14(7), 2113–2121.10.1016/j.rser.2010.03.005Search in Google Scholar

31. Roh, H. Gu., Lee, D., Lee, C. S. (2015) Impact of DMEBiodiesel, Diesel-Biodiesel and Diesel Fuels on the Combustion and Emission Reduction Characteristics of A CI Engine According to Pilot and Single Injection Strategies. J. Energy Inst., Vol. 88(4), 376–385.10.1016/j.joei.2014.11.005Search in Google Scholar

32. Santner, J., Ahmed, S. F., Farouk, T., Dryer, F. L. (2016) Computational Study of NOx Formation at Conditions Relevant to Gas Turbine Operation: Part 1. Energy Fuels, Vol. 30(8), 6745–6755.10.1021/acs.energyfuels.6b00420Search in Google Scholar

33. Semelsberger, T. A., Borup, R. L., Howard, L., Greene, H. L. (2006) Dimethyl Ether (DME) as An Alternative Fuel. J. Power Sources, Vol. 156(2), 497–511.10.1016/j.jpowsour.2005.05.082Search in Google Scholar

34. Sjoberg, M., Dec, J. E. (2005) An Investigation into Lowest Acceptable Combustion Temperatures for Hydrocarbon Fuels in HCCI Engines. P. Combust. Inst., Vol. 30, 2719–2726.10.1016/j.proci.2004.08.132Search in Google Scholar

35. Szybist, J. P., Mcfarlane, J., Bunting, B. G. (2007) Comparison of Simulated and Experimental Combustion of Biodiesel Blends in A Single Cylinder Diesel HCCI Engine. SAE.10.4271/2007-01-4010Search in Google Scholar

36. Thomas, G., Feng, B., Veeraragvan, A., Cleary, M. J., Drinnan, N. (2014) Emissions from DME Combustion in Diesel Engines and Their Implications on Meeting Future Emission Norms: A Review. Fuel Process Technol., Vol. 119, 286–304.10.1016/j.fuproc.2013.10.018Search in Google Scholar

37. Togbé, C., May-Carle, J-B., Dayma, G., Dagaut, P. (2010) Chemical Kinetic Study of the Oxidation of A Biodiesel– Bioethanol Surrogate Fuel: Methyl Octanoate–Ethanol Mixtures. J. Phys. Chem. A, Vol. 114(11), 3896–3908.10.1021/jp906882h20235606Search in Google Scholar

38. Tyson, K. S. (2001) Biodiesel Handling and Use Guidelines, National Renewable Energy Laboratory (NREL): Golden, CO, NREL/TP-580-30004.Search in Google Scholar

39. Wang, Y., Zhao, Y., Yang, Z. (2013) Dimethyl Ether Energy Ratio Effects in A Dimethyl Ether-Diesel Dual Fuel Premixed Charge Compression Ignition Engine. Applied Thermal Engineering, Vol. 54(2), 481–487.10.1016/j.applthermaleng.2013.02.005Search in Google Scholar

40. Wang, Y., Zhou, L. B., Yang, Z. J., Dong, H. Y. (2005) Study on Combustion and Emission Characteristics of a Vehicle Engine Fuelled with Dimethyl Ether. Proc. Inst. Mech. Eng. Part D J. Automob. Eng., Vol. 219(2), 263–269.10.1243/095440705X6631Search in Google Scholar

41. Westbrook, C. K., Naik, C. V., Herbinet, O., Pitz, W. J., Mehl, M., Sarathy, S.M. et al. (2011) Detailed Chemical Kinetic Reaction Mechanisms for Soy and Rapeseed Biodiesel Fuels. Combust. Flame, Vol. 158(4), 742–755.10.1016/j.combustflame.2010.10.020Search in Google Scholar

42. Yao, M. F., Chen, Z., Zheng, Z. Q., Zhang, B., Xing, Y. (2006) Study on the Controlling Strategies of Homogeneous Charge Compression Ignition Combustion with Fuel of Dimethyl Ether and Methanol. Fuel, Vol. 85(14–15), 2046–2056.10.1016/j.fuel.2006.03.016Search in Google Scholar

43. Yao, M. F., Zheng Z. L., Liu, H. F. (2009) Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines. Prog. Energ. Combust., Vol. 35(5), 398–437.10.1016/j.pecs.2009.05.001Search in Google Scholar

44. Zeldovich, Y. B. (1946) The Oxidation of Nitrogen in Combustion Explosions. Acta Physico-Chimica. U.S.S.R., Vol. 21(4), 577–628.Search in Google Scholar

45. Zhao, R., Gao, D., Pan, X. X. et al. (2018) Theoretical Studies of Anharmonic Effect on the Main Reactions Involving in NO2 in Fuel Burning. Chem Phys Lett., Vol. 703, 97–105.10.1016/j.cplett.2018.05.018Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences