Otwarty dostęp

Design and Experiment of Low-Pressure Gas Supply System for Dual Fuel Engine


Zacytuj

1. Yang Z. Y., Tan Q. M., Geng P. (2019): Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulfur diesel fuel. Polish Maritime Research, 26, 153–161.10.2478/pomr-2019-0017Search in Google Scholar

2. Wang Z. S., Lv J. G., Tan Y. F., Guo M., Gu Y. Y., Xu S., Zhou Y. H. (2019): Temporospatial variations and Spearman correlation analysis of ozone concentrations to nitrogen dioxide, sulfur dioxide, particulate matters and carbon monoxide in ambient air, China. Atmospheric Pollution Research, 10, 1203–1210.10.1016/j.apr.2019.02.003Search in Google Scholar

3. Ray S., Kim K.-H. (2014): The pollution status of sulfur dioxide in major urban areas of Korea between 1989 and 2010. Atmospheric Research, 147-148, 101–110.10.1016/j.atmosres.2014.05.011Search in Google Scholar

4. Lee S. B., Bae G. N., Lee Y. M., Moon K. C., Choi M. S. (2010): Correlation between light intensity and ozone formation for photochemical smog in urban air of Seoul. Aerosol and Air Quality Research, 10(6), 540–549.10.4209/aaqr.2010.05.0036Search in Google Scholar

5. Merien-Paul R. H., Enshaei H., Jayasinghe S. G. (2019): Effects of fuel-specific energy and operational demands on cost/emission estimates: A case study on heavy fuel-oil vs liquefied natural gas. Transportation Research Part D: Transport and Environment, 69, 77–89.10.1016/j.trd.2019.01.031Search in Google Scholar

6. Yang Z. L., Zhang D., Caglayan O., Jenkinson I. D., Bonsall S., Wang J., Huang M., Yan X. P. (2012): Selection of techniques for reducing shipping NOx and SOx emissions. Transportation Research Part D: Transport and Environment, 17(6), 478–486.10.1016/j.trd.2012.05.010Search in Google Scholar

7. Thomson H., Corbett J. J., Winebrake J. J. (2015): Natural gas as a marine fuel. Energy Policy, 87, 153–167.10.1016/j.enpol.2015.08.027Search in Google Scholar

8. Stoumpos S., Theotokatos G., Boulougouris E., Vassalos D., Lazakis I., Livanos G. (2019): Marine dual fuel engine modelling and parametric investigation of engine settings effect on performance-emissions trade-offs. Ocean Engineering, 157, 376–386.10.1016/j.oceaneng.2018.03.059Search in Google Scholar

9. Park H. J., Park, Lee S., Jeong J. Y., Chang D. J. (2018): Design of the compressor- assisted LNG fuel gas supply system. Energy, 158, 1017–1027.10.1016/j.energy.2018.06.055Search in Google Scholar

10. Chien N. B., Jong-Taek O., Asano H., Tomiyama Y. (2019): Investigation of experiment and simulation of a plate heat exchanger. Energy Procedia, 158, 5635–5640.10.1016/j.egypro.2019.01.575Search in Google Scholar

11. Feng H. J., Chen L., Wu Z. X., Xie Z. J. (2019): Constructal design of a shell-and-tube heat exchanger for organic fluid evaporation process. International Journal of Heat and Mass Transfer, 131, 750–756.10.1016/j.ijheatmasstransfer.2018.11.105Search in Google Scholar

12. Fang L., Diao N. R., Fang Z. H., Zhu K., Zhang W. K. (2017): Study on the efficiency of single and double U-tube heat exchangers. Procedia Engineering, 205, 4045–4051.10.1016/j.proeng.2017.09.881Search in Google Scholar

13. Fernández I. A. Gómez M. R., Gómez J. R., Insua A. B. (2017): Review of propulsion systems on LNG carriers. Renewable and Sustainable Energy Reviews, 67, 1395–1411.10.1016/j.rser.2016.09.095Search in Google Scholar

14. Seo S. W., Jang W. H., Kim J. N. Y., Ryu J. H., Chang D. J. (2017): Experimental study on heating type pressurization of liquid applicable to LNG fueled shipping. Applied Thermal Engineering, 127, 837–845.10.1016/j.applthermaleng.2017.08.021Search in Google Scholar

15. Wang W., Zhang Y. N., Lee K. S., Li B. X. (2019): Optimal design of a double pipe heat exchanger based on the outward helically corrugated tube. International Journal of Heat and Mass Transfer, 135, 706–716.10.1016/j.ijheatmasstransfer.2019.01.115Search in Google Scholar

16. Wang G. H., Wang D. B., Peng X., Han L. L., Xiang S., Ma F. (2019): Experimental and numerical study on heat transfer and flow characteristics in the shell side of helically coiled trilobal tube heat exchanger. Applied Thermal Engineering, 149, 772–787.10.1016/j.applthermaleng.2018.11.055Search in Google Scholar

17. Gupta P. K., Kush P. K., Tiwari A. (2007): Design and optimization of coil finned-tube heat exchangers for cryogenic applications. Cryogenics, 47, 322–332.10.1016/j.cryogenics.2007.03.010Search in Google Scholar

18. Saydam V., Parsazadeh M., Radeef M., Duan X.-L. (2019): Design and experimental analysis of a helical coil phase change heat exchanger for thermal energy storage. Journal of Energy Storage, 21, 9–17.10.1016/j.est.2018.11.006Search in Google Scholar

19. Abolmaali A. M., Afshin H. (2019): Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers. International Journal of Thermal Sciences, 139, 105–117.10.1016/j.ijthermalsci.2019.01.038Search in Google Scholar

20. Neeraas B. O., Fredheim A. O., Aunan B. (2017): Experimental data and model for heat transfer, in liquid falling film flow on shell-side, for spiral-wound LNG heat exchanger. International Journal of Heat and Mass Transfer, 47, 3565–3572.10.1016/j.ijheatmasstransfer.2004.01.009Search in Google Scholar

21. Shah M. M. (1982): Chart correlation for saturated boiling heat transfer: equations and further study. ASHRAE Transactions, 88, 185–196.Search in Google Scholar

22. Patil R. K., Shende B. W., Ghosh P. K. (1982): Designing a helical-coil heat exchanger. Chemical Engineering, 92, 85–88.Search in Google Scholar

23. Wang Q. W., Zeng M., Ma T., Du X. P., Yang J. F. (2014): Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization. Applied Energy, 135, 748–777.10.1016/j.apenergy.2014.05.004Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences