Otwarty dostęp

A Method to Determine the Tightening Sequence for Standing Rigging of a Mast


Zacytuj

1. DNV GL, Rules for Classification.: Design and construction of large modern yacht rigs, 2016. Search in Google Scholar

2. Lloyd’s Register., Rules and Regulations for the Classification of Ships.: Masts and standing rigging, Part 4, Section 10, 2017. Search in Google Scholar

3. Ślęczka D., Ziemiański L.,: Dynamic response of the mast to rapid break of guy rope (in Polish), Budownictwo i Inżynieria Środowiska, 45, 2007. Search in Google Scholar

4. Grabe G.: The Rig of the “UCA” - Finite element Analysis, University of Applied Sciences, Amsterdam 2004. Search in Google Scholar

5. Grabe G.: The Carbon and PBO Rig for the “sailOvation” - Finite element Analysis, University of Applied Sciences, Kiel. Search in Google Scholar

6. Grabe G.: The Rig of the research sailing yacht “Dyna” Measurements of Forces and FEA, High Performance Yacht Design Conference, Auckland-New Zealand 2002.10.3940/rina.ya.2002.09 Search in Google Scholar

7. Rizzo C., Boote D., Scantling of mast and rigging of sail boats: A few hints from a test case to develop improved design procedures, 11th International Symposium on Practical Design of Ships and Other Floating Structures, Brazil 2010.10.1201/9780203874981.pt2g Search in Google Scholar

8. Bentes J., Menezes R., Riera J.: Dynamic response of guyed towers in transmission lines submitted to broken conductors, 9th International Conference on Structural Dynamics, Portugal 2014. Search in Google Scholar

9. Nelofer A., Kumar S.: Finite Element Analysis of Guyed Masts under Seismic Excitation, International Journal of Science and Research 2015. Search in Google Scholar

10. Cuomo A., Zucker H., Dreslin S.: Tower Technician Killed When Guyed Tower Collapsed, Case Report 09NY095, Fatality Assessment and Control Evaluation, New York-USA 2017. Search in Google Scholar

11. Hensley G., Plaut R.: Three-dimensional analysis of the seismic response of guyed masts, Engineering Structures 29, 2006.10.1016/j.engstruct.2006.11.019 Search in Google Scholar

12. ADINA R&D Inc. Theory and Modeling Guide, Watertown, MA, USA,2009 Search in Google Scholar

13. NX Nastran, Theoretical Manual, 2016. Search in Google Scholar

14. Bureau Veritas, Rules for the Classification and the Certification of Yachts, NR500, 2016 Search in Google Scholar

15. Kozioł K., Guyed bar structures: the analysis of dynamic response to exceptional loads (in Polish), Politechnika Krakowska, Kraków 2007. Search in Google Scholar

16. Coria I., Abasolo M., Olaskoaga I., Etxezarreta A., Aguirrebeitia J.: A new methodology for the optimization of bolt tightening sequences for ring type joints, Ocean Engineering 129, 2017, pp.441–450.10.1016/j.oceaneng.2016.10.049 Search in Google Scholar

17. Yu-wen D., You-yuan W.: A Research to Cable Force Optimizing Calculation of Cable-stayed Arch Bridge, Procedia Engineering 37, 2012, pp.155 – 160.10.1016/j.proeng.2012.04.219 Search in Google Scholar

18. Bradon J., Chaplin C., Ermolaeva N.: Modelling the cabling of rope systems, Engineering Failure Analysis 14, 2007, pp.920–934.10.1016/j.engfailanal.2006.11.032 Search in Google Scholar

19. Kozak J., Tarełko W.: Case study of masts damage of the sail training vessel POGORIA. Engineering Failure Analysis, Volume 18, Issue 3, 2011, pp.819-827.10.1016/j.engfailanal.2010.11.016 Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences