Otwarty dostęp

Optimizing the Shape of a Compression-Ignition Engine Combustion Chamber by Using Simulation Tests


Zacytuj

1. AVL FIRE, ESE Diesel, Emission Module, Version 2017.Search in Google Scholar

2. Channappagoudra M., Ramesh K., Manavendra G.: Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend. Renewable Energy, 133, 2019, pp. 216–232.10.1016/j.renene.2018.10.027Search in Google Scholar

3. Gafoor A.C.P., Gupta R.: Numerical investigation of piston bowl geometry and swirl ratio on emission from diesel engines. Energy Conversion and Management, 101, 2015, pp. 541–551.10.1016/j.enconman.2015.06.007Search in Google Scholar

4. Heywood J.: Internal Combustion Engine Fundamentals. McGraw-Hill Book Company, New York 1988.Search in Google Scholar

5. Khan S., Panua R., Bose P.K.: Combined effects of piston bowl geometry and spray pattern on mixing, combustion and emissions of a diesel engine: A numerical approach. Fuel, 225, 2018, pp. 203–217.10.1016/j.fuel.2018.03.139Search in Google Scholar

6. Maehara N., Shimoda Y.: Application of the genetic algorithm and downhill simplex methods (Nelder–Mead methods) in the search for the optimum chiller configuration. Applied Thermal Engineering, 61(2), 2013, pp. 433–442.10.1016/j.applthermaleng.2013.08.021Search in Google Scholar

7. Marine engine programme. MAN energy solution. 2nd edition 2018. www.marine.man-es.comSearch in Google Scholar

8. Naber J.D., Reitz R.D. Modeling engine spray/wall impingement. SAE Technical Paper 880107.Search in Google Scholar

9. Navid A., Khalilarya S., Abbasi M.: Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process. Fuel, 228, 2018, pp. 349–367.10.1016/j.fuel.2018.04.142Search in Google Scholar

10. Pielecha I., Pielecha J., Skowron M. et al.: The influence of diesel oil improvers on indices of atomisation and combustion in high-efficiency engines. Polish Maritime Research, 3(95), vol. 24, 2017, pp. 99–105.10.1515/pomr-2017-0094Search in Google Scholar

11. Pielecha I., Wisłocki K., Cieślik W. et al.: Application of IMEP and MBF50 indexes for controlling combustion in dual-fuel reciprocating engine. Applied Thermal Engineering, 132, 2018, pp. 188–195.10.1016/j.applthermaleng.2017.12.089Search in Google Scholar

12. Shields M.D., Zhang J.: The generalization of Latin hypercube sampling, Reliability Engineering & System Safety, 148, 2016, pp. 96–108.10.1016/j.ress.2015.12.002Search in Google Scholar

13. Taghavifar H.: Towards multiobjective Nelder-Mead optimization of a HSDI diesel engine: Application of Latin hypercube design-explorer with SVM modeling approach. Energy Conversion and Management, 143, 2017, pp. 150–161.10.1016/j.enconman.2017.04.008Search in Google Scholar

14. Vedharaj S., Vallinayagam R., Yang W.M. et al.: Optimization of combustion bowl geometry for the operation of kapok biodiesel – Diesel blends in a stationary diesel engine. Fuel, 139, 2015, 561–567.10.1016/j.fuel.2014.09.020Search in Google Scholar

15. Wärtsilä Solutions for Marine and Oil & Gas Markets. Wartsila 2018, wartsila.com.Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences